Foreversoft.ru

IT Справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В чем измеряется емкость жесткого диска

Ликбез по жёстким дискам: рекомендации по выбору накопителя

На первый взгляд кажется, что рынок жёстких дисков не так динамичен, как рынок процессоров или видеокарт. Большинство потребителей считают, что жёсткие диски не развиваются так быстро, как другие комплектующие современного персонального компьютера. Однако на практике всё далеко не так – производители жёстких дисков находятся в постоянном поиске эффективных решений для улучшения характеристик винчестеров. Все эти заблуждения от недостатка информации, у большого количества среднестатистических пользователей ПК знания о жёстком диске – на уровне строчки из прайс-листа: «Samsung 160 Гбайт 7200 об./мин.». В сегодняшнем материале мы хотим восполнить этот пробел и рассказать вам, дорогие читатели, что такое винчестер.

Жёсткий диск Western Digital

Жёсткий диск Western Digital

Немного теории

Жёсткий диск представляет собой сложное устройство для хранения данных, в основу которого положен принцип магнитной записи электрических сигналов.

Винчестеры используют одну или несколько магнитных пластин, на которые нанесены концентрические дорожки. Запись и хранение информации на этих пластинах происходит за счёт преобразования электрических сигналов в определённые изменения магнитного поля с последующим воздействием этим полем на магнитную пластину. Благодаря явлению остаточного магнетизма следы от этих воздействий сохраняются в магнитном материале на длительный срок. Считывание информации, то есть воспроизведение электрических сигналов, происходит точно так же, только в обратном направлении.

Магнитные домены или битовые ячейки представляют собой чередующиеся участки с различным направлением намагниченности. Плотность магнитной пластины определяется размерами ячеек: чем они меньше, тем выше плотность записи информации.

Битовые ячейки формируют секторы, которые впоследствии определяют минимальную логическую единицу хранения данных – кластер. Размер кластера меняется в зависимости от использования файловой системы – NTFS или FAT32. В конечном итоге кластеры образуют те самые пресловутые мегабайты, которые определяют ёмкость жёсткого диска.

Для считывания и записи информации используются так называемые головки, которые собраны на механическом перемещающемся приводе, предназначенном для позиционирования. Количество головок зависит от количества пластин. Для каждой магнитной пластины применяется по две головки – при условии, что используются обе её стороны. Визуально процесс позиционирования головок напоминает виниловый проигрыватель.

Пример работы жёсткого диска

Ёмкость жёсткого диска напрямую связана с плотностью и количеством пластин. Всё достаточно просто: чем больше плотность и количество пластин – тем больше объём жёсткого диска. Однако повышать ёмкость исключительно за счёт увеличения количества пластин бессмысленно. Во-первых, корпус обыкновенного 3,5-дюймового винчестера способен уместить максимум 5 пластин и 10 головок. Во-вторых, большое количество пластин и головок увеличивает энергопотребление и тепловыделение, что повышает риск аппаратного сбоя из-за большого числа подвижных элементов.

Таким образом, для развития жёстких дисков производителю очень важно работать над увеличением плотности применяемых пластин. Для увеличения линейной плотности записи информации необходимо максимально уменьшать длину битовых ячеек и делать переходы между ними максимально резкими. На первый взгляд в теории кажется, что всё достаточно просто: уменьшай себе длину битовых ячеек и клепай пластины. Однако на практике всё немного иначе, и с уменьшением длины у битовой ячейки снижается устойчивость к внешним магнитным полям, в результате чего возникает так называемый супермагнитизм. Длина битовой ячейки уменьшается до критической отметки, и размагничивающиеся поля становятся настолько большими, что ячейка саморазмагничивается и исчезает. Говоря простым языком, происходит самопроизвольное стирание данных.

Основные игроки рынка винчестеров смогли решить эту проблему. Благодаря технологии перпендикулярной магнитной записи PMR (Perpendicular Magnetic Recording) производителям жёстких дисков удалось получить плотность в 200 Гбайт для одной пластины. Перпендикулярное расположение магнитных доменов позволило достигнуть высокой плотности без проявления суперпарамагнитного эффекта.

Формфактор, интерфейс и кэш-память жёстких дисков

Винчестеры получили очень широкое применение в различных устройствах: персональные компьютеры, ноутбуки, КПК, MP3-плееры и пр. Одним из основополагающих моментов типа жёсткого диска является его формфактор, который, в свою очередь, определяется диаметром пластин. Обычные десктопные жёсткие диски используют 3,5-дюймовые пластины и предназначены для установки в соответствующие отсеки корпусов настольных ПК.

Магнитные пластины диаметром 2,5 дюйма используются в мобильных жёстких дисках, которые широко применяются в ноутбуках и внешних портативных накопителях.

Есть и устройства, использующие пластины диаметром 1,8″, 1″ и 0,8″. Как правило, такие жёсткие диски используются в ультрапортативных ноутбуках, MP3-плеерах и других ультрамобильных девайсах.

Большинство жёстких дисков выпускается для двух интерфейсов – SATA и PATA. Их пропускная способность составляет 300 Мбит/с (Serial ATA II) и 133 Мбит/с соотвественно. На первый взгляд Serial ATA выглядит куда привлекательнее. Как говорится, многомегабайтная разница налицо, однако где преимущество от использования интерфейса с пропускной способностью 300 Мб/с, если стандартный жёсткий диск со скоростью вращения шпинделя 7 200 об./мин. имеет скорость чтения с пластин до 90 Мбит/с. Очередной маркетинг с точки зрения производительности. И всё же Serial ATA имеет конструктивное преимущество в виде тонкого шлейфа, который удобнее прокладывать в корпусе, чтобы он не мешал циркуляции воздушных потоков.

Читать еще:  Как выбрать жесткий диск для ноутбука

Жесткий диск: устройство и характеристики

Жёсткий диск (HDD) – энергонезависимое запоминающее устройство, назначение которого длительное хранение данных. Информация сохраняется на жестких носителях (дисках из специальных сплавов) имеющих ферромагнитное покрытие (двуокись хрома).

Устройство жесткого диска

Гермозона

Включает в себя: корпус из прочного сплава, диски с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя.

Блок головок

Пакет рычагов из пружинистой стали с закрепленными головками на концах.

Пластины

Изготовлены из металлического сплава и покрыты напылением ферромагнетика (окислов железа, марганца и других металлов). Диски жёстко закреплены на шпинделе, который вращается со скоростью несколько тысяч оборотов в минуту. При такой скорости вблизи поверхности диска создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности диска.

Устройство позиционирования головок

Состоит из неподвижной пары сильных постоянных магнитов, а также катушки на подвижном блоке головок.

Гермозона — заполняется очищенным и осушенным воздухом или нейтральными газами, в частности, азотом, а для выравнивания давления устанавливается тонкая металлическая или пластиковая мембрана. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления и температуры, а также при прогреве устройства во время работы. Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр — пылеуловитель.


Блок электроники

Содержит: управляющий блок, постоянное запоминающее устройство, буферную память, интерфейсный блок (передача данных, подача питания) и блок цифровой обработки сигнала.

Блок управления представляет собой систему:

  • позиционирования головок;
  • управления приводом;
  • коммутации информационных потоков с различных головок;
  • управления работой всех остальных узлов — приёма и обработки сигналов с датчиков устройства:
    • одноосный акселерометр — используемый в качестве датчика удара,
    • трёхосный акселерометр — используемый в качестве датчика свободного падения,
    • датчик давления,
    • датчик угловых ускорений,
    • датчик температуры.

Блок постоянного запоминающего устройства хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию жесткого диска.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память).

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации).

Характеристики жесткого диска

Интерфейс — поддерживаемый стандарт обмена данными с накопителями информации: ATA (IDE, PATA), SATA.

Ёмкость — объём данных, которые может хранить жесткий диск (ГБ, ТБ).

Форм-фактор — физический размер диска с ферромагнитным покрытием: 3,5 или 2,5 дюйма.

Время доступа — время, за которое жесткий диск гарантированно выполнит операцию чтения или записи на любом участке магнитного диска (диапазон от 2,5 до 16 мс).

Скорость вращения шпинделя – параметр от которого зависит время доступа и средняя скорость передачи данных. Жесткие диски для ноутбуков имеют скорость вращения 4200, 5400 и 7200 оборотов в минуту, а для стационарных компьютеров 5400, 7200 и 10 000 об/мин.

Ввод-вывод — количество операций ввода-вывода в секунду. Обычно жесткий диск производит около 50 операций в секунду при произвольном доступе и около 100 при последовательном.

Потребление энергии — потребляемая мощность в Ваттах, важный фактор для мобильных устройств.

Уровень шума – шум в децибелах, который создает механика жесткого диска при его работе (вращение шпинделя, аэродинамика, позиционирование). Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже.

Ударостойкость — сопротивляемость накопителя резким скачкам давления или ударам. Измеряется в единицах допустимой перегрузки (G) во включённом и выключенном состоянии.

Скорость передачи данных – скорость чтения/записи при последовательном доступе (внутренняя зона диска — от 44,2 до 74,5 Мб/с, внешняя зона диска — от 60,0 до 111,4 Мб/с).

Объём буфера — промежуточная память (Мб), предназначенная для сглаживания разницы скорости чтения/записи и передачи по интерфейсу. Обычно варьируется от 8 до 64 Мб.

Компьютерная грамотность с Надеждой

Заполняем пробелы – расширяем горизонты!

Единицы измерения объема информации

Для измерения длины есть такие единицы, как миллиметр, сантиметр, метр, километр. Известно, что масса измеряется в граммах, килограммах, центнерах и тоннах. Бег времени выражается в секундах, минутах, часах, днях, месяцах, годах, веках. Компьютер работает с информацией и для измерения ее объема также имеются соответствующие единицы измерения.

Бит и байт – минимальные единицы измерения информации

Мы уже знаем, что компьютер воспринимает всю информацию через нули и единички.

Бит – это минимальная единица измерения информации, соответствующая одной двоичной цифре («0» или «1»).

Бит – это только 0 («ноль») или только 1 («единичка»). С помощью одного бита можно записать два состояния: 0 (ноль) или 1 (один). Бит – это минимальная ячейка памяти, меньше не бывает. В этой ячейке может храниться либо нолик, либо единичка.

Байт состоит из восьми бит. Используя один байт, можно закодировать один символ из 256 возможных (256 = 2 8 ). Таким образом, один байт равен одному символу, то есть 8 битам:

Читать еще:  Как проверить новый жесткий диск

1 символ = 8 битам = 1 байту.

Буква, цифра, знак препинания – это символы. Одна буква – один символ. Одна цифра – тоже один символ. Один знак препинания (либо точка, либо запятая, либо вопросительный знак и т.п.) – снова один символ. Один пробел также является одним символом.

Кроме бита и байта, конечно же, есть и другие, более крупные единицы измерения информации.

Таблица байтов:

1 Кб (1 Килобайт) = 2 10 байт = 2*2*2*2*2*2*2*2*2*2 байт =
= 1024 байт (примерно 1 тысяча байт – 10 3 байт)

1 Мб (1 Мегабайт) = 2 20 байт = 1024 килобайт (примерно 1 миллион байт – 10 6 байт)

1 Гб (1 Гигабайт) = 2 30 байт = 1024 мегабайт (примерно 1 миллиард байт – 10 9 байт)

1 Тб (1 Терабайт) = 2 40 байт = 1024 гигабайт (примерно 10 12 байт). Терабайт иногда называют тонна.

1 Пб (1 Петабайт) = 2 50 байт = 1024 терабайт (примерно 10 15 байт).

1 Эксабайт = 2 60 байт = 1024 петабайт (примерно 10 18 байт).

1 Зеттабайт = 2 70 байт = 1024 эксабайт (примерно 10 21 байт).

1 Йоттабайт = 2 80 байт = 1024 зеттабайт (примерно 10 24 байт).

В приведенной выше таблице степени двойки (2 10 , 2 20 , 2 30 и т.д.) являются точными значениями килобайт, мегабайт, гигабайт. А вот степени числа 10 (точнее, 10 3 , 10 6 , 10 9 и т.п.) будут уже приблизительными значениями, округленными в сторону уменьшения. Таким образом, 2 10 = 1024 байта представляет точное значение килобайта, а 10 3 = 1000 байт является приблизительным значением килобайта.

Такое приближение (или округление) вполне допустимо и является общепринятым.

Ниже приводится таблица байтов с английскими сокращениями (в левой колонке):

10 3 b = 10*10*10 b= 1000 b – килобайт

10 6 b = 10*10*10*10*10*10 b = 1 000 000 b – мегабайт

10 9 b – гигабайт

10 12 b – терабайт

10 15 b – петабайт

10 18 b – эксабайт

10 21 b – зеттабайт

10 24 b – йоттабайт

Выше в правой колонке приведены так называемые «десятичные приставки», которые используются не только с байтами, но и в других областях человеческой деятельности. Например, приставка «кило» в слове «килобайт» означает тысячу байт. В случае с километром она соответствует тысяче метров, а в примере с килограммом она равна тысяче грамм.

Продолжение следует…

Возникает вопрос: есть ли продолжение у таблицы байтов? В математике есть понятие бесконечности, которое обозначается как перевернутая восьмерка: ∞.

Понятно, что в таблице байтов можно и дальше добавлять нули, а точнее, степени к числу 10 таким образом: 10 27 , 10 30 , 10 33 и так до бесконечности. Но зачем это надо? В принципе, пока хватает терабайт и петабайт. В будущем, возможно, уже мало будет и йоттабайта.

Напоследок парочка примеров по устройствам, на которые можно записать терабайты и гигабайты информации.

Есть удобный «терабайтник» – внешний жесткий диск, который подключается через порт USB к компьютеру. На него можно записать терабайт информации. Особенно удобно для ноутбуков (где смена жесткого диска бывает проблематична) и для резервного копирования информации. Лучше заранее делать резервные копии информации, а не после того, как все пропало.

Флешки бывают 1 Гб, 2 Гб, 4 Гб, 8 Гб, 16 Гб, 32 Гб , 64 Гб и даже 1 терабайт.

CD-диски могут вмещать 650 Мб, 700 Мб, 800 Мб и 900 Мб.

DVD-диски рассчитаны на большее количество информации: 4.7 Гб, 8.5 Гб, 9.4 Гб и 17 Гб.

Упражнения по компьютерной грамотности

Статья закончилась, но можно еще прочитать:

Параметры HDD

Жесткий диск имеет восемь основных параметров :

1. Протокол передачи данных . Есть винчестеры со следующими интерфейсами: IDЕ/SCSI/FC-AL/IEEE/USB . Пеpвые винчестеpы в PC XT имели интеpфейс ST412/ST506; так как он оpиентиpован на метод записи MFM , его часто называют MFM-интеpфейсом.

2. Среднее время доступа (Average Seek Time) — процесс позиционирования головки записи/чтения на нужное место HDD. Бывает время при чтении и время при записи . Состоит из:

времени перемещения головки с текущего трека на трек с нужным сектором ( Track-to-Track Seek Time );

времени ожидания, пока диск повернется так, что нужный сектор окажется под головкой записи/чтения;

Время измеряется в милисекундах (мс) и сегодня составляет 3,6-11,5 мс.

3. Скорость вращения (Spindle Speed) шпинделя — это скорость, с которой вращаются диски. Измеряется в оборотах в минуту (rpm). Она влияет:

на скорость чтения с поверхности диска . Чем быстрее диск крутится, тем больше информации считывается за единицу времени;

на время доступа к нужной информации . Информация в HDD записывается по кольцевым дорожкам, а каждая дорожка разбита на сектора. Время поиска информации определяется временем выбора нужной дорожки (не зависит от скорости вращения диска) и временем, необходимым для того, чтобы диск провернулся так, чтобы под головкой оказался нужный сектор. Чем скорость вращения выше, тем меньше это время. Скорость вращения 3600 — 15000 об/мин.

Для увеличения плотности записи зазор между поверхностью диска и головкой необходимо уменьшить до минимума. В современных винчестерах эта задача решается с использованием аэродинамической подъемной силы, создаваемой потоком воздуха, который увлекает за собой вращающаяся рабочая поверхность диска. Для возникновения подъемной силы рабочим поверхностям головок придают специальную форму в виде крыла. Для того чтобы головка не «улетала» далеко от поверхности диска, она закрепляется на пружинящем поводке.

Читать еще:  Как выделить место на жестком диске

Поскольку величина подъемной силы определяется плотностью воздуха, которая зависит от атмосферного давления, то винчестеры общего применения имеют ограничения по максимальной высоте подъема над уровнем моря (приблизительно до 2000. 3000 м).

В современных накопителях скорость вращения пакета дисков может достигать 15 000 об/мин. Однако высокие скорости вращения порождают проблемы, связанные с его балансировкой, гироскопическим эффектом и аэродинамикой головок. Во время работы головки ни в коем случае не должны механически соприкасаться с рабочими поверхностями – случайное касание поверхности практически всегда приводит к полному или частичному повреждению соответствующей дорожки рабочей поверхности и очень часто к обрыву самой головки.

4. Объём . Измеряется в гигабайтах (Gb). Hа самих HDD раньше писали емкость в миллионах байт и указывалась нефоpматиpованная емкость (pеальная — на 10-15% меньше). Бывает, что Bios’ы выдают емкость не в Gb, а Mb или даже в млн.байт. Сегодня в продаже — HDD емкостью 10-80Gb, максимальный объем дисков постоянно растет и пока равен 320Gb ( MaXLine от Maxtor ).

5. Плотность записи . Измеряется в гигабайтах на пластину. Внутри HDD находится один или несколько дисков. Она влияет:

на скорость : чем больше плотность записи, тем больше информации помещается на одну дорожку, и, соответственно, больше скорость считывания этой информации при одинаковой скорости вращения диска;

на охлаждение : меньшее число пластин уменьшает тепловыделение (диск меньше греется).

До 5Gb на пластину — старые винчестеры; HDD в продаже — с плотностью записи 10Gb/пл.(устар.), 15Gb/пл., 20Gb/пл., 30Gb/пл.; максимальная плотность пока равна 125Gb/пл. ( винчестеры от Seagate Technology ).

В большой степени максимальная плотность записи зависит от конструкции и характеристик головок записи/чтения. Раньше в винчестерах использовались магнитные головки , представляющие собой миниатюрные катушки индуктивности, намотанные на магнитный сердечник.

Позднее стали использовать тонкопленочные магнитные головки , а в современных винчестерах используются высокочувствительные магниторезистивные головки ( MRH — Magneto-Resistive Heads) чтения (представляет собой резистор, сопротивление которого изменяется в зависимости от напряженности магнитного поля, причем амплитуда уже практически не зависит от скорости изменения поля. Это позволяет намного более надежно считывать информацию и диска и, как следствие, значительно повысить предельную плотность записи. MR-головки используются только для считывания; запись по-преждему выполняется индуктивными головками), конструктивно объединенные с тонкопленочными головками записи. Головки собираются в блок.

Внешний вид блока головок

В современных винчестерах используется система позиционирования блока головок с поворотной подвижной катушкой, помещенной в зазоре мощного постоянного магнита, которая и является исполнительным элементом системы позиционирования.

В основе этой системы лежит предварительная (произведенная при изготовлении винчестера) запись специальных цифровых последовательностей, которые называются сервометками , в специально отведенные для этого на каждой дорожке сектора. Во время работы контроллер винчестера ориентируется на эти сервометки, вырабатывая управляющие сигналы, подаваемые в подвижную катушку, и поворачивает головку таким образом, чтобы она установилась точно над дорожкой, а затем удерживает ее на этой дорожке до поступления команды о переводе головки в новое положение.

6. Объем кэша (мультисегментного — Multisegmented Cache, Сache memory). Учитывается, что следующей командой винчестеру потребуется считать данные из секторов, следующих за текущим. Поэтому идет чтение данных из оставшихся секторов на треке, которые записываются во внутреннюю память дисковода («кэш»). Измеряется в килобайтах (мегабайтах). Ранее Cache составлял 128-1.024 Кбайт, сегодня 2-8 Мбайт. Некоторые производители (напр. Quantum), используют часть кэша под свое программное обеспечение. У других (напр. Western Digital) для хранения firmware используются специально отведенные сектора на диске, невидимые для любых операционных систем. По включению питания эта программа загружается в обычную память.

7. Потоковая скорость передачи данных (Sustained Transfer Rate). При размере считываемой информации во много раз превышающих размер выделенного для него кэша идет непрерывное Cache-считывание секторов. Измеряется в мегабайтах в секунду и сегодня составляет до 80Мбайт/с.

8. MTBF (Mean Time Between Failures, среднее время наработки на отказ). Это надежность винчестера и измеряется в часах работы. MTBF — величина усредненная (по партии), но MBFT=900т.час лучше MBFT=300т.час. Современные HDD имеют от 500,000 до 1,000,000 часов. Т.е. это 20-40 лет (при 8-часовой работе). Лидер пока SCSI-винчестер Cheetah с 1,200,000 часов.

Кроме основных параметров, важны:

  • Перегрузка от удара в рабочем/нерабочем состоянии (Operating/Nonoperating Shock), G — параметр, характеризующий устойчивость винчестера к механическим воздействиям.
  • Рабочая температура (Operating temperature),°C — параметр, по которому можно судить о «жаростойкости» винчестера.
  • Потребляемая мощность (Power Management), Вт — параметр, о том, насколько винчестер будет нагреваться.
  • Срок гарантии — от 6 месяцев до 5 лет.
  • Фирма-производитель.

Ссылка на основную публикацию
Adblock
detector