Foreversoft.ru

IT Справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вывод ошибки c

Обработка ошибок в C

Введение

Переменная errno и коды ошибок

errno – переменная, хранящая целочисленный код последней ошибки. В каждом потоке существует своя локальная версия errno, чем и обусловливается её безопасность в многопоточной среде. Обычно errno реализуется в виде макроса, разворачивающегося в вызов функции, возвращающей указатель на целочисленный буфер. При запуске программы значение errno равно нулю.

Все коды ошибок имеют положительные значения, и могут использоваться в директивах препроцессора #if. В целях удобства и переносимости заголовочный файл определяет макросы, соответствующие кодам ошибок.

Стандарт ISO C определяет следующие коды:

  • EDOM – (Error domain) ошибка области определения.
  • EILSEQ – (Error invalid sequence) ошибочная последовательность байтов.
  • ERANGE – (Error range) результат слишком велик.

Прочие коды ошибок (несколько десятков) и их описания определены в стандарте POSIX. Кроме того, в спецификациях стандартных функций обычно указываются используемые ими коды ошибок и их описания.

Нехитрый скрипт печатает в консоль коды ошибок, их символические имена и описания:

Если вызов функции завершился ошибкой, то она устанавливает переменную errno в ненулевое значение. Если же вызов прошёл успешно, функция обычно не проверяет и не меняет переменную errno. Поэтому перед вызовом функции её нужно установить в 0 .

Как видите, описания ошибок в спецификации функции iconv() более информативны, чем в .

Функции работы с errno

Получив код ошибки, хочется сразу получить по нему её описание. К счастью, ISO C предлагает целый набор полезных функций.

void perror(const char *s);

Печатает в stderr содержимое строки s , за которой следует двоеточие, пробел и сообщение об ошибке. После чего печатает символ новой строки ‘n’ .

char* strerror(int errnum);
Возвращает строку, содержащую описание ошибки errnum . Язык сообщения зависит от локали (немецкий, иврит и даже японский), но обычно поддерживается лишь английский.

strerror() не безопасная функция. Во-первых, возвращаемая ею строка не является константной. При этом она может храниться в статической или в динамической памяти в зависимости от реализации. В первом случае её изменение приведёт к ошибке времени выполнения. Во-вторых, если вы решите сохранить указатель на строку, и после вызовите функцию с новым кодом, все прежние указатели будут указывать уже на новую строку, ибо она использует один буфер для всех строк. В-третьих, её поведение в многопоточной среде не определено в стандарте. Впрочем, в QNX она объявлена как thread safe.

Поэтому в новом стандарте ISO C11 были предложены две очень полезные функции.

size_t strerrorlen_s(errno_t errnum);

Возвращает длину строки с описанием ошибки errnum .

errno_t strerror_s(char *buf, rsize_t buflen, errno_t errnum);

Копирует строку с описание ошибки errnum в буфер buf длиной buflen .

Функции входят в Annex K (Bounds-checking interfaces), вызвавший много споров. Он не обязателен к выполнению и целиком не реализован ни в одной из свободных библиотек. Open Watcom C/C++ (Windows), Slibc (GNU libc) и Safe C Library (POSIX), в последней, к сожалению, именно эти две функции не реализованы. Тем не менее, их можно найти в коммерческих средах разработки и системах реального времени, Embarcadero RAD Studio, INtime RTOS, QNX.

Стандарт POSIX.1-2008 определяет следующие функции:

char *strerror_l(int errnum, locale_t locale);

Возвращает строку, содержащую локализованное описание ошибки errnum , используя locale . Безопасна в многопоточной среде. Не реализована в Mac OS X, FreeBSD, NetBSD, OpenBSD, Solaris и прочих коммерческих UNIX. Реализована в Linux, MINIX 3 и Illumos (OpenSolaris).

int strerror_r(int errnum, char *buf, size_t buflen);

Копирует строку с описание ошибки errnum в буфер buf длиной buflen . Если buflen меньше длины строки, лишнее обрезается. Безопасна в многоготочной среде. Реализована во всех UNIX.

Увы, никакого аналога strerrorlen_s() в POSIX не определили, поэтому длину строки можно выяснить лишь экспериментальным путём. Обычно 300 символов хватает за глаза. GNU C Library в реализации strerror() использует буфер длиной в 1024 символа. Но мало ли, а вдруг?

Макрос assert()

Макрос, проверяющий условие expression (его результат должен быть числом) во время выполнения. Если условие не выполняется ( expression равно нулю), он печатает в stderr значения __FILE__ , __LINE__ , __func__ и expression в виде строки, после чего вызывает функцию abort() .

Функции atexit(), exit() и abort()

int atexit(void (*func)(void));

Регистрирует функции, вызываемые при нормальном завершении работы программы в порядке, обратном их регистрации. Можно зарегистрировать до 32 функций.

_Noreturn void exit(int exit_code);

Вызывает нормальное завершение программы, возвращает в среду число exit_code . ISO C стандарт определяет всего три возможных значения: 0 , EXIT_SUCCESS и EXIT_FAILURE . При этом вызываются функции, зарегистрированные через atexit() , сбрасываются и закрываются потоки ввода — вывода, уничтожаются временные файлы, после чего управление передаётся в среду. Функция exit() вызывается в main() при выполнении return или достижении конца программы.

Главное преимущество exit() в том, что она позволяет завершить программу не только из main() , но и из любой вложенной функции. К примеру, если в глубоко вложенной функции выполнилось (или не выполнилось) некоторое условие, после чего дальнейшее выполнение программы теряет всякий смысл. Подобный приём (early exit) широко используется при написании демонов, системных утилит и парсеров. В интерактивных программах с бесконечным главным циклом exit() можно использовать для выхода из программы при выборе нужного пункта меню.

Читать еще:  Ошибка 18456 серьезность 14 состояние 8

_Noreturn void abort(void);

Вызывает аварийное завершение программы, если сигнал не был перехвачен обработчиком сигналов. Временные файлы не уничтожаются, закрытие потоков определяется реализацией. Самое главное отличие вызовов abort() и exit(EXIT_FAILURE) в том, что первый посылает программе сигнал SIGABRT , его можно перехватить и произвести нужные действия перед завершением программы. Записывается дамп памяти программы (core dump file), если они разрешены. При запуске в отладчике он перехватывает сигнал SIGABRT и останавливает выполнение программы, что очень удобно в отладке.

Вывод в отладчике:

В случае критической ошибки нужно использовать функцию abort() . К примеру, если при выделении памяти или записи файла произошла ошибка. Любые дальнейшие действия могут усугубить ситуацию. Если завершить выполнение обычным способом, при котором производится сброс потоков ввода — вывода, можно потерять ещё неповрежденные данные и временные файлы, поэтому самым лучшим решением будет записать дамп и мгновенно завершить программу.

В случае же некритической ошибки, например, вы не смогли открыть файл, можно безопасно выйти через exit() .

Функции setjmp() и longjmp()

Вот мы и подошли к самому интересному – функциям нелокальных переходов. setjmp() и longjmp() работают по принципу goto, но в отличие от него позволяют перепрыгивать из одного места в другое в пределах всей программы, а не одной функции.

int setjmp(jmp_buf env);

Сохраняет информацию о контексте выполнения программы (регистры микропроцессора и прочее) в env . Возвращает 0 , если была вызвана напрямую или value , если из longjmp() .

void longjmp(jmp_buf env, int value);

Восстанавливает контекст выполнения программы из env , возвращает управление setjmp() и передаёт ей value .

Используя setjmp() и longjmp () можно реализовать механизм исключений. Во многих языках высокого уровня (например, в Perl) исключения реализованы через них.

Внимание! Функции setjmp() и longjmp () в первую очередь применяются в системном программировании, и их использование в клиентском коде не рекомендуется. Их применение ухудшает читаемость программы и может привести к непредсказуемым ошибкам. Например, что произойдёт, если вы прыгните не вверх по стеку – в вызывающую функцию, а в параллельную, уже завершившую выполнение?

Урок №108. Обработка ошибок, cerr и exit()

Обновл. 31 Дек 2019 |

При написании программ возникновение ошибок почти неизбежно. Ошибки в C++ делятся на две категории: синтаксические и семантические.

Синтаксические ошибки

Синтаксическая ошибка возникает при нарушении правил грамматики языка C++. Например:

если 7 не равно 8, то пишем «not equal»;

Хотя этот стейтмент нам (людям) понятен, для компьютера он будет неразборчив. В соответствии с правилами грамматики C++, корректно будет:

Синтаксические ошибки почти всегда улавливаются компилятором и их обычно легко исправить. Следовательно, о них слишком беспокоиться не стоит.

Семантические ошибки

Семантическая ошибка (или ещё «смысловая») возникает, когда код синтаксически правильный, но выполняет не то, что нужно программисту. Например:

Возможно, программист хотел, чтобы вывелось 0 1 2 3 , но, на самом деле, выведется 0 1 2 3 4 .

Семантические ошибки не улавливаются компилятором и могут иметь разное влияние: некоторые могут вообще не отображаться, что приведёт к неверным результатам, к повреждению данных или вообще к сбою программы. Поэтому об семантических ошибках беспокоиться уже придётся.

Они могут возникать несколькими способами. Одной из наиболее распространённых семантических ошибок является логическая ошибка. Логическая ошибка возникает, когда программист неправильно программирует логику выполнения кода. Например, фрагмент кода выше имеет логическую ошибку. Вот ещё один пример:

Что произойдёт, если x будет равен 4 ? Условие выполнится как true, а программа выведет x is greater than 4 . Логические ошибки иногда бывает довольно-таки трудно обнаружить.

Другой распространённой семантической ошибкой является ложное предположение. Ложное предположение возникает, когда программист предполагает, что что-то будет истинным или ложным, а оказывается наоборот. Например:

Заметили потенциальную проблему здесь? Предполагается, что пользователь введёт значение между 0 и длиной строки Hello, world! . Если же пользователь введёт отрицательное число или число побольше, то index окажется за пределами диапазона массива. В этом случае, поскольку мы просто выводим значение по индексу, результатом будет вывод мусора (при условии, что пользователь введёт число вне диапазона). Но в других случаях ложное предположение может привести и к изменениям значений переменных, и к сбою в программе.

Безопасное программирование — это методика разработки программ, которая включает анализ областей, где могут быть допущены ложные предположения, и написания кода, который обнаруживает и обрабатывает любой случай такого нарушения, чтобы снизить к минимуму риск возникновения сбоя или повреждения программы.

Определение ложных предположений

Оказывается, мы можем найти почти все предположения, которые необходимо проверить в одном из следующих трёх мест:

При вызове функции, когда caller может передать некорректные или семантически бессмысленные аргументы.

При возврате значения функцией, когда возвращаемое значение может быть индикатором выполнения (произошла ли ошибка или нет).

При обработке данных ввода (либо от пользователя, либо с файла), когда эти данные могут быть не того типа, что нужно.

Читать еще:  Что означает ошибка dns

Поэтому, придерживаясь безопасного программирования, нужно следовать следующим трём правилам:

В верхней части каждой функции убедитесь, что все параметры имеют соответствующие значения.

После возврата функцией значения, проверьте возвращаемое значение (если оно есть) и любые другие механизмы сообщения об ошибках на предмет того, произошла ли ошибка.

Проверяйте данные ввода на соответствие ожидаемому типу данных и его диапазону.

Рассмотрим примеры проблем:

Проблема №1: При вызове функции caller может передать некорректные или семантически бессмысленные аргументы:

Поточный ввод-вывод в C++

В С++, как и в С, нет встроенных в язык средств ввода-вывода.

В С для этих целей используется библиотека stdio.h .
В С++ разработана новая библиотека ввода-вывода iostream , использующая концепцию объектно-ориентированного программирования:

Библиотека iostream определяет три стандартных потока:

  • cin стандартный входной поток ( stdin в С)
  • cout стандартный выходной поток ( stdout в С)
  • cerr стандартный поток вывода сообщений об ошибках ( stderr в С)

Для их использования в Microsoft Visual Studio необходимо прописать строку:

Для выполнения операций ввода-вывода переопределены две операции поразрядного сдвига:

  • >> получить из входного потока
  • cout

Возможно многократное назначение потоков:
cout

Ввод информации

При этом из входного потока читается последовательность символов до пробела, затем эта последовательность преобразуется к типу идентификатора, и получаемое значение помещается в идентификатор:

Возможно многократное назначение потоков:
cin >> переменная1 >> переменная2 >>. >> переменнаяn;

При наборе данных на клавиатуре значения для такого оператора должны быть разделены символами (пробел, n, t ).

Особого внимания заслуживает ввод символьных строк. По умолчанию потоковый ввод cin вводит строку до пробела, символа табуляции или перевода строки.

Результат выполнения

Для ввода текста до символа перевода строки используется манипулятор потока getline() :

Результат выполнения

Манипуляторы потока

Функцию — манипулятор потока можно включать в операции помещения в поток и извлечения из потока ( >).

В С++ имеется ряд манипуляторов. Рассмотрим основные:

МанипуляторОписание
endlПомещение в выходной поток символа конца строки ‘n’
decУстановка основания 10-ой системы счисления
octУстановка основания 8-ой системы счисления
hexУстановка основания 16-ой системы счисления
setbaseВывод базовой системы счисления
width(ширина)Устанавливает ширину поля вывода
fill(‘символ’)Заполняет пустые знакоместа значением символа
precision(точность)Устанавливает количество значащих цифр в числе (или после запятой) в зависимости от использования fixed
fixedПоказывает, что установленная точность относится к количеству знаков после запятой
showposПоказывает знак + для положительных чисел
scientificВыводит число в экспоненциальной форме
get()Ожидает ввода символа
getline(указатель, количество)Ожидает ввода строки символов. Максимальное количество символов ограничено полем количество

Пример Программа ввода-вывода значения переменной в C++

Та же программа, написанная на языке Си

Пример Использование форматированного вывода

Результат выполнения

Еще один пример использования форматированного вывода: для t∈[0;3] с шагом 0,5 вычислить значение y=cos(t).

Результат выполнения

C#: обработка ошибок

Исключения, их обработка, и некоторые другие моменты, связанные с ошибками в приложении на C#.

Исключения (Exceptions) и инструкция try

Инструкция try отмечает блок кода как объект для обработки ошибок или очистки. После блока try обязательно должен идти либо блок catch , либо блок finally , либо они оба. Блок catch выполняется, когда внутри блока try возникает ошибка. Блок finally выполняется после того, как прекращает выполнять блок try (или, если присутствует, блок catch ), независимо от того, выполнился ли он до конца или был прерван ошибкой, что позволяет выполнить так называемый код очистки.

Блок catch имеет доступ к объекту исключения ( Exception ), который содержит информацию об ошибке. Блок catch позволяет обработать исключительную ситуацию и как-либо скорректировать ошибку или выбросить новое исключение. Повторное выбрасывание исключения в блоке catch обычно применяется с целью логирования ошибок или чтобы выбросить новое, более специфическое исключение.

Блок finally добавляет в программу прогнозируемость, позволяя выполнить определенный код при любых обстоятельствах. Это может быть полезно для выполнения операций очистки, например, закрытия сетевого подключения и т.д.

В целом конструкция try выглядит следующим образом:

Например, следующий код выбросит ошибку DivideByZeroException (поскольку делить на ноль нельзя) и наша программа завершить досрочно:

Чтобы этого избежать можно использовать конструкцию try :

Обработка исключений довольно ресурсоёмкая операция, поэтому на практике для таких случаев как в примере ее лучше не использовать (лучше непосредственно перед делением проверить делить на равенство нулю).

Когда выбрасывается исключение, CLR проверяет выброшено ли оно непосредственно внутри блока try , который может обработать данное исключение. Если да, выполнение переходит в соответствующий блок catch . Если блок catch успешно завершается, выполнение переходит к следующей после блока try инструкции (если имеется блок finally , то сначала выполняется он). Если же исключение выброшено не внутри блока try или конструкция try не содержит соответствующего блока catch , выполнение переходит в точку вызова метода (при этом сначала выполняется блок finally ), и проверка повторяется снова.

Если не одна функция в стэке вызовов не способна обработать исключение, ошибка выводиться пользователю и программа завершается досрочно.

Оговорка catch

В оговорке catch указывается какой тип исключения она должна перехватывать. Это может быть либо System.Exception , либо его производный класс. Перехватывая непосредственно System.Exception , мы перехватим все возможные ошибки. Это может быть полезно в нескольких случаях:

  • программа потенциально должна и может продолжить работать несмотря на ошибки любых типов
  • исключение будет выброшено повторно в блоке catch , например, после логирования ошибок
  • блок catch является последним в очереди, способным предотвратить аварийное завершение программы

Однако обычно перехватываются исключения более специфического типа, чтобы избежать ситуации, когда обработчику ошибки придется иметь дело с исключением, для которого он не предназначен (например, OutOfMemoryException ).

Можно обработать несколько типов исключений с помощью нескольких оговорок catch:

Каждая оговорка способна обработать только то исключение, которое точно совпадает с ее типом. Для одного выброшенного исключения может быть выполнена только одна оговорка catch. Обрабатываются блоки catch в том порядке, в котором они идут в коде. В этой связи более специфические исключения должны перехватываться раньше чем более общие.

Исключение может быть перехвачено и без указания переменной, если не нужен доступ к ее членам:

Более того, в оговорке catch можно опустить и переменную и тип исключения — такая оговрка будет перехватывать все исключения:

Блок finally

Блок finally выполняется всегда, независимо от того выброшено исключение или нет. Блок finally обычно содержит код очистки.

Блок finally выполняется в следующих случаях:

  • после завершения блока catch
  • если выполнение блока try прервано jump-инструкциями: return , goto и т.д.
  • после выполнения блока try полностью, если исключений так и не было выброшено

Блок finally делает программу более прогнозируемой. Например, в следующем примере открываемый файл в итоге всегда будет закрыт, независимо от того, завершиться ли блок try без ошибок, или будет прерван выброшенным исключением, или сработает инструкция return если файл окажется пустым:

В пример для закрытия файла вызывается метод Dispose . Использование этого метода внутри блока finally является стандартной практикой. C# даже позволяет заменить всю конструкцию инструкцией using .

Инструкция using

Многие классы инкапсулируют неуправляемые ресурсы, такие как дескриптор файла, соединение с базой данных и т.д. Эти классы реализуют интерфейс System.IDisposable , который содержит единственный метод без параметров Dispose , освобождающий соответствующие машинные ресурсы. Инструкция using предусматривает удобный синтаксис вызова метода Dispose для объектов реализующих IDisposable внутри блока finally :

Что эквивалентно следующей конструкции:

Выбрасывание исключений

Исключение может быть выброшено автоматически во время выполнения программы либо явно в коде программы с помощью ключевого слова throw :

Также исключение может быть выброшено повторно внутри блока catch :

Такой подход позволяет заносить ошибки в лог без их дальнейшего поглощения. Также это позволяет уклониться от обработки неожиданных исключений.

Если throw заменить на throw ex , то пример по прежнему будет работать, но свойство исключения StackTrace не будет отражать исходную ошибку.

Другой распространенный сценарий использования повторного выбрасывания исключения — повторное выбрасывание более специфического и конкретного типа исключения, чем было перехвачено ранее:

В таких случаях необходимо передать исходное исключение в качестве первого параметра конструктора нового исключения, ссылка на объект исходного исключения позже будет доступна через свойство InnerException внутреннего исключения.

Основные свойства System.Exception

К наиболее важным свойствам класса System.Exception можно отнести:

  • StackTrace — строка, представляющая все методы, которые были вызваны, начиная с того, в котором было выброшено исключение, и заканчивая тем, в котором содержится блок catch , перехвативший исключение;
  • Message — строка с описанием ошибки;
  • InnerException — содержит ссылку на объект Exeption , который вызвал текущее исключение (например, при повторном выбрасывании исключения).

Основные типы исключений

Следующие типы исключений являются наиболее распространенными в среде CLR и .NET Framework. Их можно выбрасывать непосредственно или использовать как базовые классы для пользовательских типов исключений.

  • System.ArgumentException — выбрасывается при вызове функции с неправильным аргументом.
  • System.ArgumentNullException — производный от ArgumentException класс, выбрасывается если один из аргументов функции неожиданно равен null .
  • System.ArgumentOutOfRangeException — производный от ArgumentException класс, выбрасывается когда аргумент функции имеет слишком большое или слишком маленькое значение для данного типа (обычно касается числовых типов). Например, такое исключение будет выброшено если попытаться передать отрицательное число в функцию, которая ожидает только положительные числа.
  • System.InvalidOperationException — выбрасывается когда состояние объекта является неподходящим для нормального выполнения метода, например, при попытке прочесть не открытый файл.
  • System.NotSupportedException — выбрасывается, когда запрошенный функционал не поддерживается, например, если попытаться вызвать метод Add для коллекции доступной только для чтения (свойство коллекции IsReadOnly возвращает true ).
  • System.NotImplementedException — выбрасывается, когда запрошенный функционал еще не реализован.
  • System.ObjectDisposedException — выбрасывается при попытке вызвать метод объекта, который уже был уничтожен (disposed).

Директивы препроцессора

Директивы препроцессора снабжают компилятор дополнительной информацией об областях кода. Самые распространенные директивы препроцессора — условные директивы, позволяющие включить или исключить области кода из компиляции.

Ссылка на основную публикацию
Adblock
detector