Foreversoft.ru

IT Справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Полиморфизм железа в материаловедении

Полиморфизм металлов

Полиморфизм это такое явление, когда материал в одном интервале температур или давлений имеет одну кристаллическую структуру, а в других интервалах – другую. Иными словами с изменением температуры или давления наблюдается изменение кристаллической структуры материала. Температуру и давление, при которых происходит смена кристаллической структуры материала, называют соответственно температурой и давлением полиморфного или аллотропического превращения.

Различные кристаллографические модификации одного материала принято обозначать буквами греческого алфавита α, β, g, δ, ε, σ и т.д. Модификацию, наблюдаемую при самых низких температурах, обозначают буквой α, при более высоких температурах – β, и т.д.

Ярким примером полиморфизма у неметаллических материалов является наличие двух кристаллографических модификаций чистого углерода, известных как алмаз и графит. Оба материала являются идентичными по химическому составу и отличаются лишь кристаллической структурой. В результате свойства алмаза и графита оказываются существенно различными. Графит это мягкий, хрупкий и непрозрачный материал, в то время как алмаз является одним из наиболее твёрдых минералов, встречающихся в природе, и, как правило, прозрачен.

Полиморфизм достаточно распространённое явление в мире металлов. Многие из металлов обладают полиморфизмом. Например, у Со с повышением температуры ГПУ-структура перестраивается в ГЦК-структуру, а у Ti ГПУ-структура перестраивается в ОЦК-структуру.

Наиболее ярко полиморфизм проявляется у железа, которое при нагреве два раза меняет свою кристаллическую структуру (рис. 11).

ОЦК ГЦК ОЦК жидкость

α-Fe β-Fe γ-Fe δ-Fe

768 911 1392 1539 Т, °С.

Рис. 11. Кристаллографические модификации железа.

При температурах ниже 768°С железо является ферромагнитным материалом, а при температурах выше 768°С – парамагнитным. Ранее считали, что изменение магнитных свойств железа связано с изменением его кристаллической структуры и поэтому ферромагнитное железо стали обозначать α-Fe, а парамагнитное – β-Fe. Позже выяснилось, что это не так. И то и другое железо имеют одинаковую ОЦК-структуру. Однако исторически сложившееся подразделение железа на α-Fe и β-Fe сохранили. В настоящее время железо с ОЦК-структурой, наблюдаемое в интервале температур до 911 ° С, называют α-железом.

В интервале температур от 911 до 1392 °С железо имеет ГЦК-структуру. Такое железо обозначают γ-Fe. ГЦК-структура отличается от ОЦК-структуры более высокой плотностью упаковки атомов. Поэтому при нагреве железа до температур выше 911°С наблюдается уменьшение размера (объёма) образца.

В интервале температур от 1392 до 1539°С железо вновь имеет ОЦК-структуру. Однако период кристаллической решётки этого железа чуть больше чем у α-железа. Такое железо обозначают δ-Fe.

При температурах выше 1539°С чистое железо плавиться и превращается в жидкий расплав.

Другим ярким примером полиморфизма металлов является полиморфизм олова. При температурах ниже -30°С белое и пластичное β-олово (β –Sn) превращается в свою α-модификацию, т.е. в α-Sn, которое является серым порошком. Не имея никакого представления о природе данного явления, его, в своё время, назвали «оловянной чумой».

Явление полиморфизма в очередной раз подчёркивает, что свойства материалов определяются не только их химическим составом, но и в значительной степени их структурой.

3. ФОРМИРОВАНИЕ МИКРОСТРУКТУРЫ МЕТАЛЛОВ

И СПЛАВОВ ПРИ ЗАТВЕРДЕВАНИИ

Процесс перехода вещества из жидкого состояния в твёрдое кристаллическое состояниеназывают кристаллизацией. Обратный процесс называют плавлением. Рассмотрим подробно процесс кристаллизации металлов.

Читать еще:  Оперативно технологическая связь на железнодорожном транспорте

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9478 — | 7515 — или читать все.

Учебные материалы

Некоторые элементы могут изменять свое кристаллическое строение, т.е. тип кристаллической решетки, в зависимости от внешних условий — температуры и давления.

Существование одного элемента в нескольких кристаллических формах (кристаллических модификациях) называется полиморфизмом или аллотропией.

Каждая полиморфная модификация имеет свою область температур, при которых она устойчива. Превращение одной кристаллической формы в другую происходит при постоянной температуре с выделением значительного количества тепла при охлаждении, что связано с затратой определенной энергии на перестройку кристаллической решетки и поглощением тепла при нагреве.

Перестройка кристаллической решетки в твердом состоянии называется вторичной кристаллизацией.

Как и при первичной кристаллизации для полиморфных превращений необходимы переохлаждение или перегрев относительно равновесной температуры. По своему механизму это кристаллизационный процесс, осуществляемый путем образования зародышей (как правило, на границах зерен) и последующего их роста. В результате образуются новые кристаллические зерна, имеющие другой размер и форму. Скачкообразно изменяются все свойства: удельный объем, теплоемкость, теплопроводность, механические и химические свойства.

Рисунок 2 – Виды элементарных кристаллических ячеек

Полиморфные модификации обозначают буквами греческого алфавита , , , и т.д. Модификацию, устойчивую при более низких температурах, обозначают , при более высоких — , затем и т.д. Температурным полиморфизмом обладают около тридцати металлов, например: марганец (-Мn, -Мn, -Мn, -Мn), титан (-Тi, -Тi), кобальт (-Сo, -Сo), олово (-Sn, -Sn) и др. Часть металлов не имеют полиморфных превращений, например: Ni (ГЦК), Аu (ГЦК), Ag (ГЦК), Pt (ГЦК), Cu (ГЦК), Zn (ГПУ).

Железо является основным компонентом сталей, чугунов и обладает полиморфизмом. На рисунке 3 приведена кривая охлаждения железа с температурами полиморфных превращений.

Рисунок 3 — Кривая охлаждения железа

Железо имеет две температуры полиморфного превращения 911 0 С и 1392 0 С. Ниже 911 0С железо имеет кубическую объемноцентрированную ячейку (ОЦК) и модификацию -Fe (Fe). При 911 0 С решетка перестраивается в кубическую гранецентрированную (ГЦК) и модификацию -Fe (Fe). При 1392 0 С решетка вновь перестраивается в ОЦК и модификацию -Fe (Fe). При 768 0 С (точка Кюри) на кривой охлаждения имеется площадка, связанная не с перестройкой решетки, а с изменением магнитных свойств железа. Ниже 768 0 С железо магнитно, выше — немагнитно.

Точка Кюри — это температура, соответствующая переходу из ферромагнитного состояния в парамагнитное.

Примером полиморфного превращения, обусловленного изменением температуры и давления, является изменение кристаллического строения углерода. В обычных условиях он находится в виде модификации графита, а при нагреве до 2000 0 С и давлении порядка 10 10 Па образуется модификация алмаза.

В середине восьмидесятых годов прошлого века открыта третья форма углерода в виде замкнутых сферических или сфероидальных молекул, состоящих из пяти- и шестиугольников — фуллерены. В зависимости от количества объединенных атомов углерода существуют фуллерены С28…С960. Наиболее стабильными являются молекулы С60 и С70. Полиморфные модификации углерода приведены на рисунке 4.

Полиморфизм (аллотропия) металлов

Полиморфизм (аллотропия) металлов. Сущность полиморфизма (от греч. polymorphos — многообразный) состоит в том, что под влиянием определенных процессов (изменение температуры, давления) некоторые вещества, в том числе и ряд металлов способны изменять свою кристаллическую решетку при сохранении химического состава. С физической точки зрения превращение металла из одной формы в другую обусловливается внутренней перегруппировкой молекул, которая ведет к изменению его кристаллической структуры и свойств. При этом различные формы кристаллической решетки одного металла называют полиморфными модификациями. Каждой модификации свойственно оставаться устойчивой лишь в пределах определенного для данного металла интервала температур. Температура, при которой происходит превращение одной кристаллической модификации в другую, называется температурой полиморфного превращения.

Читать еще:  Что такое бетон и железобетон

Полиморфизм характерен для железа, олова, кобальта, титана и некоторых других металлов. Медь, алюминий не претерпевают полиморфных превращений. Например, железо при разных температурах может иметь объемно-центрированную или гранецентрированную кубическую решетку, кобальт — гранецентрированную или гексагональную кристаллическую решетку.

Примером аллотропического видоизменения, обусловленного изменением давления, является углерод: при низких давлениях образуется графит, а при высоких — алмаз.

Сущность полиморфного превращения состоит в том, что при нагревании в твердом металле возникают новые центры кристаллизации, что и приводит к образованию новой решетки, формирование которой происходит с поглощением тепла при нагреве и выделением — при охлаждении. Причем каждой модификации свойственно оставаться устойчивой лишь в пределах определенного для данного металла интервала температур.

Низкотемпературную модификацию железа называют а-, при более высокой — Р-, затем у -модификацией. Температуры перехода одной модификации железа в другую (911 °С и 1392 °С) называются критическими точками. При этом углерод и другие компоненты и примеси меняют положение критических точек на температурной шкале.

В результате полиморфного превращения образуются новые кристаллические зерна, имеющие другой размер и форму. Поэтому такое превращение называют еще перекристаллизацией. и сопровождается оно скачкообразным изменением всех свойств металлов и сплавов: плотности, теплоемкости, тепло- и электропроводности, прочности и др.

На практике полиморфизм используется в технологическом процессе при термической обработке металлов. Однако истории известны случаи, когда полиморфизм стал одной из причин гибели полярной экспедиции английского исследователя В.Скотта. Оловом были запаяны канистры с керосином. При низкой температуре в условиях Севера произошло полиморфное превращение пластичного белого олова в хрупкий порошок серого цвета. В результате горючее испарилось и экспедиция осталась без топлива.

Полиморфизм железа и принципы формирования твердых растворов

Железо, как и любой металл, имеет кристаллическое строение, то есть атомы железа расположены в пространстве в определенном порядке. При этом можно выделить группу атомов, которые при мысленном копировании и перенесении смогут образовать этот порядок, иными словами, можно выделить элементарную ячейку кристаллической решетки.
Согласно [1, стр. 19] кристаллическая решетка — это «правильное, регулярное расположение атомов в твердом теле, характеризующееся периодической повторяемостью в трех измерениях».
При различных условиях (различных температуре и давлении) железо (Fe) имеет разную кристаллическую решетку. Для чистого Fe, например, при нормальном атмосферном давлении справедливо следующее: ниже 911°С Fe имеет объемоцентрированную кубическую решетку (ОЦК), при 911—1392 °С– гранецентрированную кубическую решетку (ГЦК), выше 1392 °C – опять ОЦК [1, стр. 50].
Выше 1539 Fe плавится, и понятно, что никакой решетки нет.

Читать еще:  Как узнать какое у меня железо

1392—1539 °C и h0, то и E1>E0.

Так и с металлом: при нормальном атмсферном давлении при температуре 1392—1539°C энергетически выгодным является состояние с ОЦК. С 911 до 1392 – более выгодно ГЦК.

С полиморфизмом мы закончили. Переходим к твердым растворам.
Слова «чистое железо» выше выделены неслучайно, поскольку мы ведь реально-то имеем дело со сталями, а не с чистым железом.

Стали – твердые растворы на основе железа, с содержанием углерода до 2%, в которых помимо железа присутствуют другие элементы [2 стр.5, 3], которые влияют на положение этих критических температур и на другие свойства (это, кстати, отдельная тема и тоже обещанная статья).

Одни из элементов попадают в стали не по воле металлургов, а частично переходят из сырьевого материала (руда, агломерат, чугун, металлолом), частично в процессе производства (раскисление алюминием, добавление марганца, обработка кальцием и т.п.), другие элементы добавляют специально для целенаправленного влияния на свойства. Одни элементы могут раствориться в железе, другие не могут.

Железо образует твердые растворы со многими элементами: с металлами — растворы замещения, с углеродом, азотом водородом — растворы внедрения [1, стр. 145].

Чем ближе размер атома к атому железа, тем вероятнее, что растворение будет по принципу замещения, например, таким будет раствор Ni или Co в железе. Это как с яблоками на картинке: размер один, а сорта разные.

Рассмотрим идеальную углеродистую сталь (это значит только железо и только углерод, и ничего более). Углерод, имея меньший атомный радиус, растворяется в железе по принципу внедрения. Представим, что среди стройных рядов высоких солдат на Красной площади кое-где засели гражданские или что среди яблок «Грени Смит» лежит «Китайка». Углерод как раз сидит в свободном пространстве кристаллической решетки между атомами железа, внедряется в свободное пространство.

Растворы внедрения и замещения можно различить один от другого, измеряя период решетки, например, с помощью рентгеноструктурного анализа или измерения плотности сплава.

Есть два интересных момента, которые указаны выше и которые связаны с полиморфным превращением:
1. при превращении меняется параметр решетки;
2. при превращении меняется тип решетки.
А интересные моменты заключаются в том, что в ГЦК решетке атомы железа стоят друг от друга дальше, центр ячейки вообще свободный (см. рис. выше). А что делать нашим растворенным атомам хрома и углерода, когда с понижением температуры происходит превращение ГЦК в ОЦК? А тут как в игре со стульями, кто успел – тот и сел, остальные – из игры выбывают. То есть часть атомов остается в решетке, а другим придется уходить за ее пределы, например, образуя соединения. Углерод, например, когда уходит, может прихватить с собой как атомы хрома, так и железа, и образует с ними карбиды.
В следующей статье разберем вопрос микроструктур подробнее.

Ссылки

1. Гуляев А.П. — Металловедение, М. «Металлургия», 1986, 282 с.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Ссылка на основную публикацию
Adblock
detector