Foreversoft.ru

IT Справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Напряженно деформированное состояние железобетонных элементов

Три стадии напряженно-деформированного состояния железобетонных элементов при изгибе.

Рассмотрим три характерных стадии напряженно-деформированного состояния в зоне чистого изгиба железобетонного элемента при постепенном увеличении нагрузки.

I стадия. В начале I стадии бетон растянутой зоны сохраняет сплошность, работает упруго, эпюры нормальных напряжений в бетоне сжатой и растянутой зон близки к треугольным (рис. 20, а). Усилия в растянутой зоне воспринимает в основном бетон. Напряжения в арматуре незначительны.

Стадия I – стадия упругой работы элемента. С увеличением нагрузки развиваются неупругие деформации растянутой зоны, эпюра напряжений становится криволинейной (рис. 20, б). Величина напряжений приближается к временному сопротивлению бетона на осевое растяжение. Конец I стадии наступает, когда деформации удлинения крайних волокон достигнут (предельная растяжимость). Вместо криволинейной эпюры напряжений в растянутой зоне для упрощения принимают прямоугольную с ординатой Rbtn (Rbt,ser).

а) б)

Рис. 20. I стадия НДС:

а – начало I стадии; б – конец I стадии.

По I стадии рассчитывают элементы на образование трещин и деформации – до образования трещин.

II стадия. В бетоне растянутой зоны интенсивно образуются и раскрываются трещины. В местах трещин растягивающие усилия воспринимает арматура и бетон над трещиной под нулевой линией. На участках между трещинами – арматура и бетон работают еще совместно.

По мере возрастания нагрузки напряжения в арматуре приближаются к пределу текучести Rs, т.е. происходит конец II стадии.

Эпюра нормальных напряжений в бетоне сжатой зоны по мере увеличения нагрузки за счет развития неупругих деформаций искривляется (рис. 21). Стадия II сохраняется значительное время, характерна для эксплуатационных нагрузок.

Рис. 21. II стадия НДС.

По II стадии рассчитывают величину раскрытия трещин и кривизну элементов.

III стадия.Стадия разрушения элемента. Самая короткая по продолжительности. Напряжения в арматуре достигают предела текучести, а в бетоне – временного сопротивления осевому сжатию. Бетон растянутой зоны из работы элемента почти полностью исключается.

2 характерных случая разрушения:

1. Пластический характер разрушения.

Начинается с проявления текучести арматуры, вследствие чего быстро растет прогиб и развиваются трещины.

Участок элемента, на котором наблюдается текучесть арматуры и пластические деформации сжатого бетона, искривляется при постоянном предельном моменте (рис. 22, а). Такие участки называются пластическими шарнирами.

Напряжения в сжатой зоне бетона достигают временного сопротивления сжатию и происходит его раздробление.

2. При избыточном содержании растянутой арматуры происходит хрупкое (внезапное) разрушение от полного исчерпания несущей способности сжатой зоны бетона при неполном использовании прочности растянутой арматуры (рис. 22, б).

III стадия используется в расчетах на прочность.

Рис. 22. III стадия НДС:

а – 1 случай разрушения; б – 2 случай разрушения.

Напряженно-деформированное состояние железобетонных изгибаемых элементов.

Элементы с ненапрягаемой арматурой. Изгибаемые элементы в за­висимости от характера воздействия нагрузки и армирования разруша­ются как по нормальному, так и по наклонному сечениям (рис). Достижение предельного состояния по нормальному сечению вызывает­ся действием момента: по наклонному сечению — действием момента или поперечной силы или совместного их действия.

При изгибе железобетонных балок различают участки действия од­ного изгибающего момента М (участок I на рис.) и участки действия изгибающего момента М и поперечной силы Q (участок II на рис).

На некоторых ступенях загружения балки нагрузкой постепенно увеличивающейся интенсивности под воздействием главных растягива­ющих напряжений в бетоне образуются (не одновременно) нормальные трещины (в сечениях, нормальных к продольной оси элемента) и наклон­ные трещины (в сечениях, наклонных к той же оси).

Рассмотрим напряженное состояние железобетонного элемента по нормальным сечениям (рис). Различают три стадии напряжен­ного состояния изгибаемых элементов, изготовленных без предваритель­ного напряжения,

В начальной стадии. I при нагрузке малой интенсивности деформа­ции элемента близки к упругим; зависимость между напряжениями и деформациями в бетоне и арматуре линейная, эпюры нормальных на­пряжений в бетоне сжатой и растянутой зон сечения треугольные. Стадия I характеризуется отсутствием трещин в растянутом бетоне; в рас­тянутой зоне нормальных сечений балки бетон и арматура совместно сопротивляются внешним воздействиям. Нейтральная ось сечений, нор­мальных к продольной иск элемента, проходит в центре тяжести при веденного сечения. К концу стадии I в растянутой зоне балки деформа­ции растянутого бетона становятся неупругими, эпюра напряжений за­метно искривляется, напряжения в бетоне у растянутой грани балки достигают предела прочности на растяжение sб.р, а его относительные деформации — предельных значений eрmaх=0,0001-0,00015. При этом напряжения в растянутой арматуре еще весьма малы, их значение со­ставляет примерно sa = eрmaхEa= 0,00015×2100000»300 кгс/см 2 .

Стадия II наступает после образования нормальных трещин в бето­не растянутой зоны. С дальнейшим увеличением нагрузки эпюра напря­жений в бетоне сжатой зоны существенно искривляется в связи с нара­станием его неупругих деформаций; наибольшие напряжения в сжатой зоне бетона остаются меньше предела прочности на сжатие sб.пр. Трещины в бетоне растянутой зоны развиваются почти до нейтральной оси, ширина их по мере увеличения нагрузки возрастает. В местах образова­ния трещин бетон в нормальном сечении из работы выключается, все растягивающие напряжения воспринимаются арматурой; напряжения в арматуре постепенно с ростом нагрузки увеличиваются; к концу ста­дии II они превышают предел упругости и достигают предела текуче­сти, если сталь таковой обладает.

На участках между трещинами вследствие сцепления арматуры с бетоном бетон участвует в работе на растяжение и частично разгружа­ет растянутую арматуру. Из-за трещин нейтральная ось по длине эле­мента становится волнообразной, подымаясь над трещинами. , _

Трещины раскрываются шире; неупругие деформации бетона сжатой зоны нарастают, отчего эпюра напряжений резко искривля­ется; волнообразная нейтральная ось перемещается в сторону сжа­той зоны.

В стадии III с новым сравнительно малым увеличением нагрузки на­пряжения в арматуре остаются равными пределу текучести от, но де­формации се возрастают. К концу стадии III наибольшие сжимающие напряжения в бетоне достигают предельной величины sб.пр и наступает состояние предельного равновесия элемента и его разрушение.Если арматура не имеет физического предела текучести, то полага­ют, что стадия II завершается, когда напряжение в арматуре достигает условного предела текучести (напряжения, отвечающего относительно­му удлинению арматуры, равному e=0,2%). В этом случае в стадии III напряжения в арматуре продолжают, увеличиваться, сопровождаясь не­упругими деформациями, а предельное состояние элемента и разрушение наступают, когда сжатый бетон или растянутая арматура достигнут пре­дельного сопротивления.

Читать еще:  Смена id железа

Стадии III присущи значительные деформации, что обусловливает постепенное нехрупкое разрушение элемента — случай I разрушения.

При значительном содержании растянутой арматуры в балке ее раз­рушение может произойти вследствие раздавливания бетона сжатой зо­ны при напряжениях в арматуре ниже предела текучести. Такое разру­шение происходит внезапно хрупко — случай II разрушения. В таком случае считают сечение элемента «переармированным». Такие сечения допускают в исключительных случаях.

Предварительно напряженные элементы. Рассмотрим последова­тельность изменения напряженных состояний изгибаемого элемента, из­готовляемого с натяжением арматуры на упоры, начиная с момента об­жатия бетона до разрушения (табл.).

Состояние 1. Уложенная в форму нижняя Fн и верхняя F’н арматура натянута на упорах до контролируемых напряжений, соответственно sо и s’о. Элемент бетонируют и выдерживают до приобретения бетоном прочности Ro³0.7R. В этом состоянии происходят первые потери напряжений sп1 и s’п1. Напряжения в арматуре становятся рав­ными sн1=sо-sп1 и s’н1=s’о-s’п1. Напряжения в бетоне равны нулю.

Состояние 2. Арматура отпущена с упоров, она обжимает элемент, обжатие происходит внецентренно, так как арматура несимметрична; вследствие этого элемент выгибается. При обжатии элемента напряже­ния в арматуре уменьшаются на величину nsб1 в арматуре Fн и ns’б1 в F’н (где sб1 и s’б1 — напряжения в бетоне на уровне центра тяжести арматур Fн и F’н с учетом первых потерь в арматуре sп1 и s’п1, а n=Ea/Eб).

После обжатия элемента в арматуре происходят вторые потери sп2 и s’п2 и в ней устанавливаются напряжения, равные в арматуре Fн и F’н соответственно:

Здесь sб2 и s’б2 — напряжения в бетоне сжатой и растянутой зон се­чения на уровне центров тяжести арматур Fн и F’н, определенные с уче­том проявления всех потерь.

Состояние 3. Приложена внешняя нагрузка к элементу. Изгибающий момент от нагрузки создает в сечении двузначную эпюру напряжений. Эти напряжения суммируются с напряжениями предварительного об­жатия.

В этом состоянии значение внешней нагрузки принимают таким, чтобы момент от нее в элементе погашал до нуля предварительное обжа­тие бетона на уровне центра тяжести арматуры, т.е. снижал напряже­ния в бетоне на этом уровне на sб2. При этом напряжения в арматуре Fн увеличатся на nsб2 и составят sо-sп (где sп=sп1+sп2).

Состояние 4. Внешняя нагрузка увеличивается до значения, при ко­тором момент от нес в сечении элемента увеличит растягивающие напряжения в бетоне до предельного сопротивления растяжению sбр. Напря­жения в арматуре Fн при этом возрастут примерно на 300 кгс/см 2 (см. начало этого параграфа) и достигнут значения sо-sп +300 кгс/см 2 .

Состояние 5. При последующем увеличении нагрузки образуются трещины; в сечениях, совпадающих с ними, усилия в растянутой зоне элемента воспринимаются одной арматурой. Напряжения в бетоне сжа­той зоны и растянутой арматуре растут по мере увеличения нагрузки. Разрушение элемента происходит при достижении растянутой арматурой или бетоном сжатой зоны предельного сопротивления.

Рассмотренные напряженные состояния используют при расчетах железобетонных элементов; до образования трещин их считают упруго-деформирующимися.

Образование трещин в элементах рассчитывают по состоянию 4 (см. табл); при промежуточных загружениях в этой стадии рас­считывают прогибы предварительно напряженных конструкций 1-й и 2-й категории трещиностойкости.

По стадии II (рис.) припромежуточныхзагружениях пос­ле образования трещин определяют прогибы, а также ширину раскры­тия трещин; по состоянию 5 (см. табл.) производят те же расчеты предварительно напряженных элементов 3-й категории трещиностойкости.

По конечному состоянию стадии III (см. рис.) и заверша­ющему этапу состояния 5 (см. табл.) определяют несущую способ­ность изгибаемых элементов, их прочность по нормальным сечениям.

Три стадии напряжённо-деформированного состояния железобетонных элементов

Чтобы понять работу и характер разрушения изгибаемых железо­бетонных элементов, рассмотрим напряженное состояние балки, за­груженной двумя сосредоточенными силами по схеме, представлен­ной на рис. 31.

Рис. 31. Схема нагружения железобетонной балки

Опыты показывают, что при этом в балке могут возникнуть тре­щины, как нормальные к продольной оси, так и наклонные, что соответствует траекториям главных растягивающих напряжений σmt. Разрушение балки может произойти как по нормальному, так и по наклонному сечению. В большинстве случаев сначала появля­ются трещины, перпендикулярные к продольной оси балки в зоне чистого изгиба, а затем, по мере увеличения нагрузки, и наклонные – пре­имущественно на приопорных участках.

Рассмотрим случай разрушения балки, представленной на рис. 32, по нормальному сечению при загружении её постепенно воз­растающей нагрузкой. Такое разрушение может иметь место, когда продольная арматура в растянутой зоне поставлена не в избытке. При этом условимся, что бетон работает в соответствии с диаграм­мой сжатия, у которой нисходящая ветвь отсутствует, а арматура предусмотрена из «мягкой» стали и имеет на диаграмме растяже­ния чётко выраженную площадку текучести (рис. 36 г, д).

При постепенном увеличении нагрузки на такую балку можно отметить следующие три характерные стадии работы её поперечных сечений, находящихся в зоне чистого изгиба.

Стадия I (продолжается до появления нормальных трещин в бетоне растянутой зоны). Она имеет место при небольших нагруз­ках, составляющих приблизительно 15-20% от разрушающей, когда напряжения в бетоне и арматуре невелики, деформации носят пре­имущественно упругий характер, а эпюры нормальных напряжений в бетоне сжатой и растянутой зон треугольные. Нейтральный слой проходит через центр тяжести приведённого к бетону сечения (рис. 32). На рис. 32 и соответственно средний предел прочно­сти бетона при осевом сжатии и средний предел прочности бетона при осевом растяжении.

Читать еще:  Win 10 требования к железу

Рис. 32. Стадии напряжённо-деформированного состояния изгиба­емого элемента:

а – фактические эпюры напряжений; б – то же, схематизированные

После этого при некотором увеличении нагрузки в волокнах бе­тона растянутой зоны развиваются неупругие деформации, начиная с крайних волокон. Деформации в них доходят до = 15 • 10 -5 . Эпюра напряжений в растянутой зоне превращается в криволиней­ную и растягивающие напряжения в бетоне становятся равными не только в крайних волокнах. Это означает, что наступает конеч­ный этап стадии I – стадия Iа. Бетонная балка в этот момент разру­шается. Напряжения в растянутой арматуре в стадии Iа определя­ются в соответствии с условиями совместности деформаций и законом Гука

Стадия II – это новое качественное состояние балки. Наступает она после появления трещин в бетоне растянутой зоны, когда растяги­вающие усилия в сечениях, где образовались трещины, восприни­маются арматурой и бетоном над трещиной (расположенным ниже нейтральной оси). Между трещинами бетон работает на растяже­ние, и напряжения в арматуре уменьшаются по мере удаления от сечения с трещиной.

В интервале растянутой зоны между двумя соседними трещи­нами сцепление арматуры с бетоном не нарушается. В сжатой зоне бетона развиваются неупругие деформации и эпюра нормальных на­пряжений искривляется. Высота сжатой зоны бетона в этой и следующей стадиях переменна по длине элемента: в сечениях над трещи­нами она меньше чем в сечениях между трещинами. Продольные деформации бетона сжатой зоны в сечении над трещиной несколько больше чем на участке между трещинами. По этой стадии работа­ют наиболее напряжённые сечения в период эксплуатации. Нагрузка на конструкцию в этот момент может доходить до 65% и более от разрушающей.

Конец стадии II характеризуется началом заметных неупругих деформаций в арматуре. К концу этой стадии напряжения в ар­матуре превышают предел упругости и при арматуре из «мягкой» стали могут иногда достигать предела текучести (стадии IIа). Тре­щины в бетоне растянутой зоны иногда могут развиваться почти до нейтральной оси.

Стадия III (стадия разрушения) характеризуется относительно коротким по времени периодом работы балки. Криволинейность эпюры напряжений сжатия в бетоне становится ярко выра­женной и приближается по очертанию к кубической параболе или параболе более высокого порядка. Бетон растянутой зоны из работы почти полностью исключается.

Опыты свидетельствуют, что характер разрушения балки по нор­мальному сечению зависит от вида и количества продольной арма­туры в сечении. При этом возможны следующие два случая разру­шения балки.

В случае 1 при относительно невысоком содержании в сечении арматуры из «мягкой» стали разрушение балки (его начальная ста­дия) начинается с арматуры (напряжения в ней достигают предела текучести, а деформации постепенно нарастают) и заканчивается раздроблением бетона сжатой зоны. Такое разрушение носит посте­пенный, плавный (пластический) характер. Высота сжатой зоны в этом случае по мере загружения балки уменьшается.

Случай 2 имеет место в элементах с избыточным содержанием арматуры (любой) или переармированных. Разрушение переарми­рованных элементов происходит внезапно (хрупко) по бетону сжа­той зоны от его раздробления. Напряжения в растянутой арматуре в этот момент не достигают предела текучести. Здесь переход из стадии II в стадию III происходит внезапно. Применять такие эле­менты нежелательно, так как они не экономичны. Их применение допускается только в исключительных случаях.

При практическом использовании эпюры напряжений в бетоне схематизируют, спрямляя криволинейные участки и отбрасывая зо­ны растяжения. Схематизированные эпюры выглядят как показа­но на рис. 32, б. Некоторые из этих эпюр носят условный характер, поскольку на нейтральной оси напряжения не могут быть равны предельным. Дело здесь в том, что для упрощения расчёта по несу­щей способности по стадии III эпюра напряжений в бетоне сжатой зоны принимается прямоугольной вместо фактической криволинейной из-за чего она при сохранении неизменной её площади получает­ся укороченной. На результаты расчётов такая замена не оказывает существенного влияния.

Очевидно, что во время работы изгибаемого железобетонного элемента под нагрузкой различные его сечения по длине испыты­вают разные стадии напряжённо-деформированного состояния.

Три аналогичные стадии напряжённо-деформированного состо­яния имеют место при внецентренном сжатии и при внецентренном растяжении, так как в этих случаях также получаются двузначные эпюры напряжений.

Не нашли то, что искали? Воспользуйтесь поиском:

Три стадии напряженно-деформированного состояния

Рассмотрим три характерных стадии напряженно-деформированного состояния в зоне чистого изгиба железобетонного элемента при постепенном увеличении нагрузки. Рассмотрим ж/б балку свободно лежащую на 2-х опорах.

I стадия. В начале I стадии бетон растянутой зоны сохраняет сплошность, работает упруго, эпюры нормальных напряжений в бетоне сжатой и растянутой зон близки к треугольным (рис. 20, а). Усилия в растянутой зоне воспринимает в основном бетон. Напряжения в арматуре незначительны.

Стадия I – стадия упругой работы элемента. С увеличением нагрузки развиваются неупругие деформации растянутой зоны, эпюра напряжений становится криволинейной. Величина напряжений приближается к временному сопротивлению бетона на осевое растяжение. Конец I стадии наступает, когда деформации крайних волокон достигнут предельной растяжимости. Вместо криволинейной эпюры напряжений в растянутой зоне для упрощения принимают прямоугольную с ординатой Rbtn (Rbt,ser).

а) б)

а – начало I стадии; б – конец I стадии.

По I стадии рассчитывают элементы на образование трещин и деформации – до образования трещин.

II стадия. При дальнейшем увеличении нагрузки в бетоне растянутой зоны интенсивно образуются и раскрываются трещины. В местах трещин растягивающие усилия воспринимает арматура и бетон над трещиной под нулевой линией. На участках между трещинами – арматура и бетон работают совместно.

Читать еще:  Влияние углерода на полиморфизм железа

По мере возрастания нагрузки напряжения в арматуре приближаются к пределу текучести Rs, т.е. происходит конец II стадии.

Эпюра нормальных напряжений в бетоне сжатой зоны по мере увеличения нагрузки за счет развития неупругих деформаций искривляется. Стадия II сохраняется значительное время, характерна для эксплуатационных нагрузок.

По II стадии рассчитывают величину раскрытия трещин и кривизну элементов.

III стадия.Стадия разрушения элемента. Самая короткая по продолжительности. Напряжения в арматуре достигают предела текучести, а в бетоне – временного сопротивления осевому сжатию. Бетон растянутой зоны из работы элемента почти полностью исключается.

2 характерных случая разрушения:

1. Пластический характер разрушения. Начинается с проявления текучести арматуры, вследствие чего быстро растет прогиб и развиваются трещины. Участок элемента, на котором наблюдается текучесть арматуры и пластические деформации сжатого бетона, искривляется при постоянном предельном моменте. Такие участки называются пластическими шарнирами.

Напряжения в сжатой зоне бетона достигают временного сопротивления сжатию и происходит его раздробление.

2. При избыточном содержании растянутой арматуры происходит хрупкое (внезапное) разрушение от полного исчерпания несущей способности сжатой зоны бетона при неполном использовании прочности растянутой арматуры.

III стадия используется в расчетах на прочность.

7. Методы расчета сечений ж/б элементов

1. Метод расчета по допускаемым напряжениям: За основу взята стадия II ндс и приняты следующие допущения: 1) бетон растянутой зоны не работает, растягивающее напряжение воспринимается арматурой; 2) бетой сжатой зоны работает упруго, а зависимость между напряж-ми и деф-ми линейная согласно закону Гука; 3) нормальные к продольной оси сечения плоские до изгиба остаются плоскими после изгиба, т. е. гипотеза плоских сечений. Как следствие этих допущений, в бетоне сжатой зоны принимается треугольная эпюра напряжений и постоянное значение отношения модулей упругости материалов α=Es/Eb. Рассм-ся приведенное однородное сечение, в котором площадь сечения арматуры As заменяется площадью сечения бетона, равной α×As.

Основной недостаток — бетон рассматривается как упругий материал. Действительное распределение напряжений в бетоне по сечению в стадии II не отвечает треугольной эпюре напряжений, а α— число не постоянное, зависящее от значения напряжения в бетоне, продолжительности его действия и других факторов.

2. Метод расчета сечений по разрушающим усилиям: исходит из стадии III ндс при изгибе. Работа бетона растянутой зоны не учитывается. В расчетные формулы вместо допускаемых напряжений вводятся предел прочности бетона при сжатии и предел текучести арматуры. При этом отпадает необходимость в числе α. Эпюра напряжений в бетоне сжатой зоны вначале принималась криволинейной, а затем — прямоугольной. Усилие, допускаемое при эксплуатации конструкции, определяется делением разрушающего усилия на общий коэффициент запаса прочности k. Для изгибаемых элементов: М=Мр/k; для сжатых: N=Np/k.

Метод расчета по разрушающим усилиям учитывает упругопластические свойства железобетона. Преимуществом этого метода по ср-ю с методом расчета по допускаемым напряжениям является возможность определения близкого к действительности общего коэффициента запаса прочности. При расчете в ряде случаев получается меньший расход арматурной стали по сравнению с расходом стали по методу допускаемых напряжений. Н-р, в изгибаемых элементах сжатая арматура по расчету обычно не требуется.

Недостаток — возможные отклонения фактических нагрузок и прочностных характеристик материалов от их расчетных значений не могут быть явно учтены при одном общем синтезирующем коэффициенте запаса прочности.

3. Метод расчета железобетонных конструкций по предельным состояниям -При расчете по этому методу четко устанавливают предельные состояния конструкций и используют систему расчетных коэффициентов, введение которых гарантирует, что такое состояние не наступит при самых неблагоприятных сочетаниях нагрузок и при наименьших значениях прочностных характеристик материалов.

Для предельных состояний I группы условие прочности обеспечивается, если усилие, возникающее в элементе от внешних воздействий, не будет превышать предельного усилия, которое может выдержать элемент, т. е. при соблюдении неравенства: , где F – усилие от расчетных нагрузок (M, N или Q); Fu – предельное усилие, которое может выдержать элемент (минимальная несущ. способность сечения элемента).

По II группе предельных состояний выполняют расчеты по образованию трещин, раскрытию трещин и расчет по перемещениям. 1) , где F – усилие от нормативных нагрузок (M или N); Fcrc – внутреннее усилие, которое может выдержать элемент перед образованием трещин, т.е. при напряжениях в растянутой зоне сечения равных Rbtn. 2) , где acrc – расчетное значение ширины раскрытия трещины; acrc,u – предельно допустимая ширина раскрытия трещины. 3) , где f – прогиб элемента от внешних воздействий; fu –предельный прогиб элемента, допустимый по усл. Эксплуатации

8. Две группы предельных состояний

Предельными считаются состояния, при которых конструкции перестают удовлетворять предъявляемым к ним в процессе эксплуатации требованиям, т.е. теряют способность сопротивляться внешним нагрузкам и воздействиям или получают недопустимые перемещения или чрезмерно раскрытые трещины.

Железобетонные конструкции должны удовлетворять требованиям расчета по двум группам предельных состояний.

Предельные состояния I группы(по несущей способности):

· потеря прочности или несущей способности вследствие разрушения бетона или разрыва арматуры;

· потеря устойчивости формы конструкции;

· усталостное разрушение(расчет на выносливость под действием многократно повторяющейся подвижной или пульсирующей нагрузки).

· Разрушение от совместного воздействия силовых факторов и неблагоприятных влияний внешней среды(агрессивность)

Предельные состояния II группы(группа непригодности к нормальной эксплуатации):

· чрезмерные прогибы или выгибы;

· чрезмерное раскрытие трещин.

Расчет по предельным состояниям конструкции производят для всех стадий: изготовление, хранение, транспортирование, монтаж и эксплуатация.

Усилия в статически-неопределимых конструкциях определяют с учетом неупругих деформаций бетона и арматуры, что очень существенно при длительном воздействии нагрузки, а также учитывается перераспределение усилий.

Ссылка на основную публикацию
Adblock
detector