Foreversoft.ru

IT Справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие архитектуры называются фон неймановскими

Какие архитектуры называются фон неймановскими

В 1946 году трое учёных [1] [2] — Артур Бёркс (англ. Arthur Burks ), Герман Голдстайн и Джон фон Нейман — опубликовали статью «Предварительное рассмотрение логического конструирования электронного вычислительного устройства» [3] [4] . В статье обосновывалось использование двоичной системы для представления данных в ЭВМ (преимущественно для технической реализации, простота выполнения арифметических и логических операций — до этого машины хранили данные в десятичном виде [5] ), выдвигалась идея использования общей памяти для программы и данных. Имя фон Неймана было достаточно широко известно в науке того времени, что отодвинуло на второй план его соавторов, и данные идеи получили название «принципы фон Неймана».

Принцип однородности памяти Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Принцип адресуемости памяти Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен. Принцип последовательного программного управления Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Принцип жесткости архитектуры Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Так же в некоторых источниках [каких?] указывается принцип двоичного кодирования, но существовали машины работающие с троичным и с десятичным кодом.

Компьютеры, построенные на принципах фон Неймана

В середине 1940-х проект компьютера, хранящего свои программы в общей памяти, был разработан в Школе электрических разработок Мура (англ. Moore School of Electrical Engineering ) в Университете штата Пенсильвания. Подход, описанный в этом документе, стал известен как архитектура фон Неймана, по имени единственного из названных авторов проекта Джона фон Неймана, хотя на самом деле авторство проекта было коллективным. Архитектура фон Неймана решала проблемы, свойственные компьютеру ENIAC, который создавался в то время, за счёт хранения программы компьютера в его собственной памяти. Информация о проекте стала доступна другим исследователям вскоре после того, как в 1946 году было объявлено о создании ENIAC. По плану предполагалось осуществить проект силами Муровской школы в машине EDVAC, однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, получившие копии проекта, сумели решить эти проблемы гораздо раньше группы разработчиков из Муровской школы и реализовали их в собственных компьютерных системах. Первыми семью компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:

  1. прототип — Манчестерская малая экспериментальная машина — Манчестерский университет, Великобритания, 21 июня 1948 года;
  2. EDSAC — Кембриджский университет, Великобритания, 6 мая 1949 года;
  3. Манчестерский Марк I — Манчестерский университет, Великобритания, 1949 год;
  4. BINAC — США, апрель или август 1949 года;
  5. CSIR Mk 1 — Австралия, ноябрь 1949 года;
  6. SEAC — США, 9 мая 1950 года
  7. EDVAC — США, август 1949 года — фактически запущен в 1951 году;

Узкое место архитектуры фон Неймана

Совместное использование шины для памяти программ и памяти данных приводит к узкому месту архитектуры фон Неймана, а именно ограничению пропускной способности между процессором и памятью по сравнению с объёмом памяти. Из-за того, что память программ и память данных не могут быть доступны в одно и то же время, пропускная способность является значительно меньшей, чем скорость, с которой процессор может работать. Это серьезно ограничивает эффективное быстродействие при использовании процессоров, необходимых для выполнения минимальной обработки на больших объёмах данных. Процессор постоянно вынужден ждать необходимых данных, которые будут переданы в память или из памяти. Так как скорость процессора и объём памяти увеличивались гораздо быстрее, чем пропускная способность между ними, узкое место стало большой проблемой, серьезность которой возрастает с каждым новым поколением процессоров [источник не указан 68 дней] .

См. также

Примечания

  1. Юрий Полунов.Автора. // PC Week/Russian Edition. — 2006. — № 20 (530).
  2. Cragon, H. G. Computer Architecture and Implementation. — Cambridge University Press, 2000. — P. 2. — 238 p. — ISBN 978-0-521-65168-4
  3. Burks A. W., Goldstine H. H., Neumann J. Preliminary Discussion of the Logical Design of an Electronic Computing Instrument. — Institute for Advanced Study, Princeton, N. J., July 1946.
  4. Смирнов А. Д. Архитектура вычислительных систем : Учебное пособие для вузов. — М .: Наука, 1990. — С. 104. — 320 с. — ISBN 5-02-013997-1
  5. Юрий Полунов.Электронная, универсальная… // PC Week/Russian Edition. — 2006. — № 13 (523).

Для улучшения этой статьи желательно ? :

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Проставив сноски, внести более точные указания на источники.
Технологии цифровых процессоров
Архитектура

8 бит · 16 бит · 32 бит · 64 бит · 128 бит

Параллелизм
PipelineКонвейер · In-Order & Out-of-Order execution · Переименование регистров · Speculative execution
УровниБит · Инструкций · Суперскалярность · Данных · Задач
ПотокиМногопоточность · Simultaneous multithreading · Hyperthreading · Superthreading · Аппаратная виртуализация
Классификация ФлиннаSISD · SIMD · MISD · MIMD
РеализацииDSP · GPU · SoC · PPU · Векторный процессор · Математический сопроцессор • Микропроцессор · Микроконтроллер
КомпонентыBarrel shifter · FPU · BSB · MMU · TLB · Регистровый файл · control unit · АЛУ • Демультиплексор · Мультиплексор · Микрокод · Тактовая частота • Корпус • Регистры • Кэш (Кэш процессора)
Управление питаниемAPM · ACPI · Clock gating · Динамическое изменение частоты • Динамическое изменение напряжения

Wikimedia Foundation . 2010 .

Смотреть что такое «Архитектура фон Неймана» в других словарях:

Машина фон Неймана — термины, названные в честь Джона фон Неймана, впервые рассмотревшего эти концепции, и может означать: Архитектура фон Неймана, концепцию архитектуры ЭВМ Самовоспроизводящая машина, класс машин, способных к самовоспроизведению: Универсальный… … Википедия

Фон Нейман — Джон фон Нейман в 1940 е Джон фон Нейман (англ. John von Neumann или Йоганн фон Нейман, нем. Johann von Neumann; при рождении Янош Лайош Нейман (венг. Neumann János Lajos), 28 декабря 1903, Будапешт 8 февраля 1957, Вашингтон) венгро… … Википедия

Фон Нейман, Джон — Джон фон Нейман в 1940 е Джон фон Нейман (англ. John von Neumann или Йоганн фон Нейман, нем. Johann von Neumann; при рождении Янош Лайош Нейман (венг. Neumann János Lajos), 28 декабря 1903, Будапешт 8 февраля 1957, Вашингтон) венгро… … Википедия

Архитектура компьютера — Для улучшения этой статьи желательно?: Добавить иллюстрации. Викифицировать статью. Архитектура вычислительной машины (Архитектура … Википедия

Архитектура набора команд — Эту страницу предлагается объединить с Система команд. Пояснение причин и обсуждение на странице Википедия:К объединению/6 ноября 2011. Обсуждение длится одну неделю (или дольш … Википедия

Компьютерная архитектура — Архитектура компьютера логическая организация и структура аппаратных ресурсов вычислительной системы и программного обеспечения. Это фундаментальная схема и функциональное описание требований и реализации основных узлов ЭВМ. В основе архитектуры … Википедия

Принстонская архитектура — Схематичное изображение машины фон Неймана. Архитектура фон Неймана (англ. Von Neumann architecture) широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином … Википедия

Гарвардская архитектура — Гарвардская архитектура архитектура ЭВМ, отличительными признаками которой являются: 1. Хранилище инструкций и хранилище данных представляют собой разные физические устройства. 2. Канал инструкций и канал данных также физически разделены.… … Википедия

Нейман, Джон фон — Джон фон Нейман John von Neumann … Википедия

Лекция по теме «Архитектура фон Неймана. Простейшие типы архитектур»

Как организовать дистанционное обучение во время карантина?

Помогает проект «Инфоурок»

БАЗОВЫЕ ПРЕДСТАВЛЕНИЯ ОБ АРХИТЕКТУРЕ ЭВМ

Структура компьютера — это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства — от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Архитектурой компьютера считается его представление на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т. д.

Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного запоминающего устройства (ОЗУ, ОП), внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Принципы фон Неймана

В основу архитектуры большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом в отчете по ЭВМ EDVAC:

принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Выборка программы из памяти осуществляется с помощью счетчика команд (СчАК). Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды. Если после выполнения команды следует перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду;

принцип однородности памяти . Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм);

принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских. Существуют и другие классы компьютеров, принципиально отличающиеся от них, — нефон-неймановские. Например, в ассоциативных компьютерах может не выполняться принцип программного управления, поскольку каждая команда здесь содержит адрес следующей (т. е. они могут работать без счетчика команд, указывающего на выполняемую команду программы). По прошествии более 60 лет большинство компьютеров так и имеют «фон-неймановскую архитектуру», причем принципы фон Неймана реализованы в следующем виде:

оперативная память (ОП) организована как совокупность машинных слов (МС) фиксированной длины или разрядности (имеется в виду количество двоичных единиц или бит, содержащихся в каждом МС). Например, ранние ПЭВМ имели разрядность 8, затем появились -разрядные, затем — 32- и 64-разрядные машины. В свое время существовали также 45-разрядные (М-20, М-220), 35-разрядные (Минск-22, Минск-32) и др. машины;

ОП образует единое адресное пространство, адреса МС возрастают от младших к старшим;

в ОП размещаются как данные, так и программы, причем в области данных одно слово, как правило, соответствует одному числу, а в области программы — одной команде (машинной инструкции — минимальному и неделимому элементу программы);

команды выполняются в естественной последовательности (по возрастанию адресов в ОП), пока не встретится команда управления (условного/безусловного перехода, или ветвления — branch), в результате которой естественная последовательность нарушится;

ЦП может произвольно обращаться к любым адресам в ОП для выборки и/или записи в МС чисел или команд.

Архитектура «звезда» . Здесь процессор (ЦУ), а соединен непосредственно с ВУ и управляет их работой (ранние модели машин). Этот тип также именуется классическая архитектура (фон Неймана) — одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд — программа. Это однопроцессорный компьютер.

Принстонская и гарвардская архитектуры. Архитектура фон Неймана часто ассоциируется с принстонской архитектурой, которая характеризуется использованием общей оперативной памяти для хранения программ и данных. Альтернативная — гарвардская архитектура (название связано с компьютером «Марк-1» (1950 г.), в котором использовалась отдельная память для команд) характеризуется физическим разделением памяти команд (программ) и памяти данных. Каждая память соединяется с процессором отдельной шиной, что позволяет одновременно с чтением-записью данных при выполнении текущей команды производить выборку и декодирование следующей команды. Гарвардская архитектура появляется в современных процессорах, когда в кэш-памяти ЦП выделяется память команд (I-Cache) и память данных (D-Cache).

Иерархическая архитектура. ЦУ соединено с периферийными процессорами (вспомогательными процессорами, каналами, канальными процессорами), управляющими в свою очередь контроллерами, к которым подключены группы ВУ (системы IBM 360-375, ЕС ЭВМ).

Магистральная структура (общая шина). Процессор (процессоры) и блоки памяти (ОП) взаимодействуют между собой и с ВУ (контроллерами ВУ) через внутренний канал, общий для всех устройств (машины DEC, IBM PC-совместимые ПЭВМ). Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность линий магистрали разделяется на отдельные группы — шину адреса, шину данных и шину управления.

К этому типу архитектуры относится также архитектура персонального компьютера (ПК). Конечно, реальная структура ПК отличается от теоретических схем — в ней используется несколько разновидностей шинных интерфейсов, которые соединяются между собой мостами — контроллерами памяти (Northbridge) и периферийных устройств (Southbridge).

Какие архитектуры называются фон неймановскими

Компьютер должен иметь:

Память компьютера представляет собой некоторое количество пронумерованных ячеек, в каждой из которых могут находиться или обрабатываемые данные, или инструкции программ. Все ячейки памяти должны быть одинаково легко доступны для других устройств компьютера.

  • С помощью внешнего устройства в память компьютера вводится программа.
  • Устройство управления считывает содержимое ячейки памяти, где находится первая инструкция (команда) программы и организует ее выполнение. Команда может задавать:
    • выполнение логических или арифметических операций;
    • чтение из памяти данных для выполнения арифметических или логических операций;
    • запись результатов в память;
    • ввод данных из внешнего устройства в память;
    • вывод данных из памяти на внешнее устройство.
  • Устройство управления начинает выполнение команды из ячейки памяти, которая находится непосредственно за только что выполненной командой. Однако этот порядок может быть изменен с помощью команд передачи управления (перехода). Эти команды указывают устройству управления, что ему необходимо продолжить выполнение программы, начиная с команды, содержащейся в иной ячейки памяти.
  • Результаты выполнения программы выводятся на внешнее устройство компьютера.
  • Компьютер переходит в режим ожидания сигнала от внешнего устройства.

Один из принципов «Архитектуры фон Неймана» гласит: в компьютере не придется изменять подключения проводов, если все инструкции будут храниться в его памяти . И как только эту идею в рамках “архитектуры фон Неймана» воплотили на практике, родился современный компьютер.

Как всякая техника, компьютеры развивались в сторону увеличения функциональности, целесообразности и красоты. Есть вообще утверждение, претендующее на закон: совершенный прибор не может быть безобразным по внешнему виду и наоборот, красивая техника не бывает плохой. Компьютер становится не только полезным, но и украшающим помещение прибором. Внешний вид современного компьютера, конечно, соотносится со схемой фон Неймана, но в то же время и разнится с ней.

Благодаря фирме IBM идеи фон Неймана реализовались в виде широко распространенного в наше время принципа открытой архитектуры системных блоков компьютеров. Согласно этого принципа компьютер не является единым неразъемным устройством, а состоящим из независимо изготовленных частей, причем методы сопряжения устройств с компьютером не являются секретом фирмы-производителя, а доступны всем желающим. Таким образом, системные блоки можно собирать по принципу детского конструктора, то есть менять детали на другие, более мощные и современные, модернизируя свой компьютер ( апгрейд , upgrade — «повышать уровень»). Новые детали полностью взаимозаменяемы со старыми. «Открыто архитектурными» персональные компьютеры делает также системная шина, это некая виртуальная общая дорога или жила, или канал, в который выходят все выводы ото всех узлов и деталей системного блока. Надо сказать, что большие компьютеры (не персональные) не обладают свойством открытости, в них нельзя просто так что-то заменить другим, более совершенным, например, в самых современных компьютерах могут отсутствовать даже соединительные провода между элементами компьютерной системы: мышью, клавиатурой («keyboard»– «клавишная доска») и системным блоком. Они могут общаться между собой при помощи инфракрасного излучения, для этого в системном блоке есть специальное окошко приема инфракрасных сигналов (по типу пульта дистанционного управления телевизора).

В настоящее время обычный персональный компьютер представляет собой комплекс, состоящий из:

  • основной электронной платы (системной, материнской), на которой размещены те блоки, которые осуществляют обработку информации вычисления;
  • схем, управляющих другими устройствами компьютера, вставляемых в стандартные разъемы на системной плате – слоты;
  • дисков хранения информации;
  • блока питания, от которого подводится электропитание ко всем электронным схемам;
  • корпуса (системный блок), в котором все внутренние устройства компьютера устанавливаются на общей раме;
  • клавиатуры;
  • монитора;
  • других внешних устройств.

Компьютеры, построенные на принципах фон Неймана

В середине 1940-х проект компьютера, хранящего свои программы в общей памяти был разработан в Школе электрических разработок Мура (англ. Moore School of Electrical Engineering ) в Университете штата Пенсильвания. Подход, описанный в этом документе, стал известен как архитектура фон Неймана, по имени единственного из названных авторов проекта Джона фон Неймана, хотя на самом деле авторство проекта было коллективным. Архитектура фон Неймана решала проблемы, свойственные компьютеру ENIAC, который создавался в то время, за счёт хранения программы компьютера в его собственной памяти. Информация о проекте стала доступна другим исследователям вскоре после того, как в 1946 году было объявлено о создании ENIAC. По плану предполагалось осуществить проект силами Муровской школы в машине EDVAC, однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, получившие копии проекта, сумели решить эти проблемы гораздо раньше группы разработчиков из Муровской школы и реализовали их в собственных компьютерных системах. Первыми пятью компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:

Параллельные структуры вычислительных систем

«Фон-Неймановские» и «не-Фон-Неймановские» архитектуры

Немного истории. Первую ЭВМ создал в 1939 г. в США профессор Джон Атанасов, болгарин, со своим аспирантом К.Берри. Две малые ЭВМ, созданные ими в период 1937 — 1942 гг., были прототипами большой ЭВМ АВС для решения систем линейных уравнений, которая в 1942 г. доводилась по устройствам ввода-вывода и должна была войти в строй в 1943 г., но призыв Атанасова в армию в 1942 г. воспрепятствовал этому. Проект электронной ЭВМ Эниак ( Electronics Numerical Integrator and Computer ) был сделан в 1942 г. Д.Моучли и Д.Эккертом и осуществлен в 1945 г. в Муровской электротехнической лаборатории Пенсильванского университета. В 1946 г. Эниак был публично продемонстрирован в работе. В нем впервые были применены триггеры. Рождение Эниак считают началом компьютерной эры, посвящая ему научные симпозиумы и другие торжественные мероприятия. (Международный симпозиум, посвященный 50-летию первой ЭВМ, был проведен и в Москве в июне 1996 г.)

Однако еще в начале 40-х годов XX века Атанасов поделился с Моучли информацией о принципах, заложенных в ЭВМ АВС. Хотя Моучли впоследствии утверждал, что он не воспользовался этой информацией в патенте на Эниак, суд не согласился с этим. Вернувшись из армии после войны, Атанасов узнал, что более мощная ЭВМ Эниак уже создана, и потерял интерес к этой теме, не поинтересовавшись, насколько Эниак похож на его ЭВМ АВС.

Известный английский математик Алан Тьюринг был не только теоретиком по информации и теории алгоритмов, автором теоретического автомата «машины Тьюринга», но и талантливым инженером, создавшим в начале 1940-х годов первую работающую специализированную ЭВМ. Эта ЭВМ под названием «Колосс» была сконструирована и сделана им совместно с Х.А.Ньюменом в Блетчи (Англия) и начала работать в 1943 г. Сообщения о ней своевременно не публиковались, т.к. она использовалась для расшифровки секретных германских кодов во время войны.

Основные архитектурно-функциональные принципы построения ЭВМ были разработаны и опубликованы в 1946 г. венгерским математиком и физиком Джоном фон Нейманом и его коллегами Г.Голдстайном и А.Берксом в ставшем классическим отчете «Предварительное обсуждение логического конструирования электронного вычислительного устройства». Основополагающими принципами ЭВМ на основании этого отчета являются: 1) принцип программного управления выполнением программы, и 2) принцип хранимой в памяти программы. Они легли в основу понятия фон-Неймановской архитектуры , широко использующей счетчик команд .

Вернемся к настоящему. Счетчик команд отражает «узкое горло», которое ограничивает поток команд, поступающих на исполнение , их последовательным анализом.

Альтернативной архитектурой является «не-фон-Неймановская» архитектура , допускающая одновременный анализ более одной команды. Поиски ее обусловлены необходимостью распараллеливания выполнения программы между несколькими исполнительными устройствами — процессорами. Счетчик команд при этом не нужен. Порядок выполнения команд определяется наличием исходной информации для выполнения каждой из них. Если несколько команд готовы к выполнению, то принципиально возможно их назначение для выполнения таким же количеством свободных процессоров. Говорят, что такие ВС управляются потоком данных (data flow) .

Общая схема потоковых ВС представлена на рис. 1.4.

Читать еще:  Элементы клиент серверной архитектуры
Ссылка на основную публикацию
Adblock
detector