Foreversoft.ru

IT Справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды адресации памяти

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

Адресация памяти

Адрес памяти (англ. Memory adress ) — это понятие данных, используемых программно-аппаратными средствами для получения доступа к требуемому участку памяти компьютера. Адрес памяти представляет собой последовательность цифр фиксированной длины, которые, обычно, отображаются и обрабатываются как целые числа. Причиной такой формы записи являются особенности CPU (такие как программный счетчик и возрастающие регистры адреса(ячейки) памяти), а также использование памяти как массива, поддерживаемого различными языками программирования.

Содержание

Типы адресов памяти

Физические адреса

Память цифрового компьютера (или основная память) состоит из множества ячеек памяти, каждая из которых имеет физический адрес. [Источник 1] — код, который центральный процессор (или другое устройство) может использовать для доступа к ней. Как правило, только системное программное обеспечение, то есть BIOS [Источник 2] , операционные системы, и некоторые специализированные вспомогательные программы (например, тестеры памяти), обращаются к физической памяти с использованием операторов машинного кода и регистров процессора, Инструктируя CPU направлять аппаратное устройство, называемое контроллером памяти, использовать шину памяти или системную шину или отдельные управляющие, адресные и информационные шины для выполнения команд программы. Шина контроллеров памяти состоит из нескольких параллельных линий, каждая из которых представлена двоичной цифрой (бит). Ширина шины и, следовательно, количество адресуемых единиц хранения и количество битов в каждой единице варьируется среди компьютеров. Физический адрес — это конечный результат всех преобразований других типов адресов, перечисленных далее. На нём кончается работа внутри центрального процессора по преобразованию адресов.

Эффективные адреса

Эффективный адрес — это начало пути вычисления физического адреса. Он задаётся в аргументах индивидуальной машинной инструкции, и вычисляется из значений регистров, смещений и масштабирующих коэффициентов, заданных в ней явно или неявно.

Логические адреса

Без знания номера и параметров сегмента, в котором указан эффективный адрес, последний бесполезен. Сам сегмент выбирается ещё одним числом, именуемым селектором. Пара чисел, записываемая как selector:offset, получила имя логический адрес. Так как активные селекторы хранятся в группе специальных регистров, чаще всего вместо первого числа в паре записывается имя регистра, например, ds:0x11223344 [Источник 3] . В старых компьютерах логические и физические адреса были согласованы, но с момента появления виртуальной памяти у большинства прикладных программ нет информации о физических адресах. Скорее, они адресуют логические адреса [Источник 4] или виртуальные адреса, используя блок управления памятью компьютера и отображение памяти операционной системы.

Линейные адреса

Эффективный адрес — это смещение от начала сегмента — его базы. Если сложить базу и эффективный адрес, то получим число, называемое линейным адресом:

lin_addr = segment.base + eff_addr

Преобразование логический → линейный не всегда может быть успешным, так как при его исполнении проверяется несколько условий на свойства сегмента, записанных в полях его дескриптора. Например, проверяется выход за границы сегмента и права доступа.

Виртуальные адреса

В литературе и в документации других архитектур встречается ещё один термин — виртуальный адрес. Он не используется в документации Intel на IA-32, однако встречается, например, в описании Intel® Itanium, в котором сегментация не используется. Можно смело считать, что для IA-32 виртуальный == линейный. В советской литературе по вычислительной технике этот вид адресов также именовался математическим.

Единица измерения адреса

Большинство современных компьютеров используют байтовую адресацию, причем каждый адрес идентифицирует один 8-разрядный байт памяти; данные, слишком большие чтобы храниться в одном байте, могут находиться в нескольких байтах, образуя последовательность последовательных адресов. Существуют компьютеры с пословной адресацией, где минимальным адресуемым блоком памяти является слово на процессоре. Например, миникомпьютер Data General Nova и микросхемы Texas Instruments TMS9900 и National Semiconductor IMP-16 использовали 16-битные слова, также было много 36-разрядных универсальных компьютеров (например, PDP-10), которые использовали 18-разрядную пословную адресацию, а не байт-адресацию, предоставляя адресное пространство из 218 36-битных слов (приблизительно 1 мегабайт памяти). Эффективность адресации памяти зависит от размера бита шины, используемой для адресации — чем больше бит, тем больше адресов доступно компьютеру. Например, 8-разрядный адресный компьютер с 20-разрядной адресной шиной (например, Intel 8086) может адресовать 2 20 (1 048 576) ячеек памяти или один MB памяти, тогда как 32-разрядная шина (например, Intel 80386) Адреса 2 32 (4 294 967 296) или 4 ГБ адресного пространства. Напротив, 36-разрядный адресно-адресуемый аппарат с 18-разрядной адресной шиной адресует только 218 (262,144) 36-разрядных местоположений (9,437,184 бита), что эквивалентно 1,179,648 8-битным байтам или 1152 КБ.

Некоторые старые компьютеры (десятичные компьютеры) были десятизначными с цифровой адресацией. Например, каждый адрес в магнитной памяти IBM 1620 идентифицировал одну шестиразрядную двоично-кодированную десятичную цифру, состоящую из бита четности, бита флага и четырех числовых битов. В 1620 использовались пятизначные десятичные адреса, поэтому в теории максимально возможный адрес был 99,999. На практике CPU поддерживал 20000 ячеек памяти и мог добавить до двух дополнительных модулей внешней памяти, каждый из которых поддерживает 20 000 адресов, в общей сложности 60 000 (00000-59999).

Размер слова в зависимости от размера адреса

Размер слова является характеристикой для данной архитектуры компьютера. Он обозначает количество цифр, которое процессор может обрабатывать за один раз. Современные процессоры, включая встроенные системы, обычно имеют размер слова 8, 16, 24, 32 или 64 бита; Большинство современных компьютеров общего назначения используют 32 или 64 бита. В истории же использовалось много различных вариантов, включая 8, 9, 10, 12, 18, 24, 36, 39, 40, 48 и 60 бит.

Очень часто, когда речь идет о размере слова современного компьютера, также оценивается размер адресного пространства на этом компьютере. Например, компьютер, называемый «32-битным», также обычно разрешает 32-разрядные адреса памяти; 32-разрядный компьютер с байтовой адресацией может адресовать 2^32 = 4,294,967,296 байт памяти или 4 гибибайта (GB). Это позволяет эффективно хранить адрес памяти одним словом.

Однако это не всегда выполняется. Компьютеры могут иметь адреса памяти, большие или меньшие, чем размер их слова. Так многие 8-разрядные процессоры, например MOS Technology 6502, поддерживают 16-разрядные адреса, а если бы они их не поддерживали, то они были бы ограничены лишь 256 байтами адресной памяти. 16-разрядные процессоры Intel 8088 и Intel 8086 поддерживают 20-разрядную адресацию через сегментацию, что позволяет им получать доступ к 1 Мбайт, а не 64 Кбайт памяти. Все процессоры Intel Pentium, начиная с Pentium Pro, включают в себя расширения физических адресов (PAE [Источник 5] ), которые поддерживают отображение 36-разрядных физических адресов в 32-разрядные виртуальные адреса.

Теоретически современные 64-разрядные компьютеры с байтовой адресацией могут адресовать 2 64 байта, но на практике объем памяти ограничен процессором, контроллером памяти или особенностями печатной платы (например, количеством разъемов физической памяти или количеством паяемой памяти).

Читать еще:  Читательский адрес издания это

Содержание отдельной ячейки памяти

Каждая ячейка памяти на компьютере с хранимой программой хранит двоичное число или десятичное число некоторого типа. Эти числа определяются как данные или как команды, а их использование определяется командами, которые извлекают и взаимодействуют с ними. Некоторые «ранние» программисты сочетали команды и данные в словах как способ сэкономить память: «Манчестер-Марк-1» имел место в своих 40-битных словах для хранения нескольких бит данных — его процессор игнорировал небольшую секцию в середине слова — и это часто использовалось как эксплойт для хранения дополнительных данных. Самовоспроизводящиеся программы, такие как вирусы, иногда рассматривают себя как данные, а иногда как команды. Самовоспроизводящийся код в настоящее время устаревает, поскольку его тестирование и техническое обслуживание непропорционально сложно для экономии нескольких байт, а также он может выдавать неверные результаты из-за предположений компилятора или процессора относительно состояния машины, но все же он иногда используется намеренно, с большой осторожностью.

Адресное пространство в программировании приложений

В современной многозадачной среде процессы приложений обычно имеют в своем адресном пространстве (или пространствах) куски памяти следующих типов:

  • Машинный код, в том числе:
    • Собственный код программы;
    • Совместно используемые библиотеки.
  • Данные, в том числе:
    • Инициализированные данные;
    • Неинициализированные (но выделенные) переменные;
    • Стек для переменных исполняемой программы;
    • Куча;
    • Совместно используемая память и отображенные в память файлы.

Некоторые части адресного пространства могут вообще не отображаться.

Схемы адресации

Компьютерная программа может обращаться к адресу, указанному явным образом — в низкоуровневом программировании его обычно называют абсолютным адресом или иногда конкретным адресом, он известен как указатель в языках более высокого уровня. Но программа также может использовать относительный адрес, который указывает местоположение по отношению к другому месту (базовому адресу). Также существует много других способов косвенной адресации.

Модели памяти

Многие программисты предпочитают адресовать память таким образом, чтобы не было различий между пространством кода и пространством данных, а также физической и виртуальной памятью, другими словами, численно идентичные указатели относятся к точно одному и тому же байту ОЗУ.

Однако многие старые компьютеры не поддерживали плоскую модель памяти — в частности, аппараты архитектуры Harvard вынуждали память с командами полностью отделяться от памяти с данными. Многие современные DSP(digital signal processor) (такие как Motorola 56000) имеют три отдельные области хранения — хранение программ, хранение коэффициентов и хранение данных. Некоторые часто используемые команды извлекаются из всех трех областей одновременно — меньшее количество областей хранения (даже если бы были одинаковые общие байты памяти) приводило бы к замедлению выполнения этих команд.

Модели памяти в х86 архитектуре

Старые компьютеры x86 использовали сегментированные адреса модели памяти на основе комбинации двух чисел: сегмента памяти и смещения внутри этого сегмента. Некоторые сегменты неявно трактовались как сегменты кода, предназначенные для команд, сегментов стека или обычных сегментов данных. Хотя использование было разным, сегменты не имели какой-либо защиты памяти. В плоской модели памяти все сегменты (сегментные регистры) обычно устанавливаются в ноль, и только смещения являются переменными.

Виды адресации памяти

Михаил Тычков aka Hard

Доброго времени суток.

Итак, сегодня мы поговорим о довольно сложных вещах. Поэтому, если кто расположился перед монитором с пивом, прошу его поставить, на время, обратно в холодильник 🙁 так как, боюсь, Вам потребуется все Ваше внимание.

Начнем с того, что 90% работы процессора связано с оперативной памятью. Он берет оттуда данные, обрабатывает их и отсылает обратно в память. Кроме этого, сам процессор имеет собственную память, называемую регистрами. Графически это можно изобразить так:

где слева регистры процессора R1, R2 … Rn, а справа ячейки памяти. Зачем нужны регистры? Давайте рассмотрим такую вот ситуевину: в процессор поступает некоторое количество данных. Говоря языком умным – несколько операндов и с ними необходимо провести некоторые действия. Поступили эти операнды из оперативной памяти и процессор по команде начал с ними работать. Поскольку действий над ними несколько, то работа разбивается на несколько этапов и результат каждого необходимо запомнить. Спрашивается: где запомнить? Можно конечно отправить в ячейки оперативной памяти, но на передачу и запись этих данных в память уйдет время, так как память работает значительно медленнее процессора. К тому же учтите, что записывать мы будем промежуточные результаты, которые необходимо будет еще много раз использовать. Потеря времени налицо, как говорится! Поэтому используются регистры внутри процессора, которые работают значительно быстрее, по сути дела на тактовой частоте процессора. К тому же адресация к ним происходит быстрее. А вот о типах адресации мы и поговорим ниже.

Но для начала определимся с форматом команды. Что это за фигня такая? Скажу умно: под форматом команды понимают совокупность размера всех полей и их расположения в команде. Представим себе упрощенный вид команды:

Команда делится на две области: область кода операции и область адресов. Вначале идет код операции (КОП) который говорит, что вообще необходимо делать, а затем идет адрес операнда/операндов с которым/которыми это надо делать. Адресная область может состоять из нескольких частей – это, так называемые многоадресные команды. С точки зрения программиста, наиболее удобны трехадресные (ранее были распространены четырехадресные, которые уже практически не применяются).

Адресная область состоит из трех полей: в первых двух лежат адреса операндов, а в третье будет записан адрес результата действия над операндами.

В двухадресных командах адресная область состоит из двух полей: поле адреса первого операнда и поле адреса второго операнда. Адрес результата действия над операндами будет записан в первое поле.

В одноадресных командах адресная область состоит из одного единственного поля, в котором лежит адрес операнда, а адрес второго операнда и результата совпадает с сумматором. Существуют так же и безадресные команды, которые применяются при работе со стеками. Чаще всего используются двух-, одно- и безадресные команды.

Но это еще не все. Фигня заключается в том, что операнды эти могут лежать черт те где. Об этом знает только та программа, которая, собственно, их и запрашивает. Для того, чтобы процессор нашел нужные операнды, в поле адреса операнда вкладывают … адрес операнда (то есть тот адрес, по которому, обратившись, процессор найдет операнд или, проще говоря, необходимые данные).

Но не все так просто! Существует несколько типов адресации. Начнем с непосредственной адресации – это клинический случай, когда вместо адреса операнда в команде указывается сам операнд (правда, если он представляет целое число). Выбрав из памяти код операции, процессору уже нет необходимости лезть опять в память за самим операндом, ведь он передается вместе с КОП.

Читать еще:  Адресация в сети internet

Но такое не всегда бывает. Если в команде указан полный адрес ячейки, где лежат необходимые данные, то это уже полный или абсолютный тип адресации.

Кроме этого, в поле адреса операнда может быть указан адрес или регистра или ячейки памяти, в которой лежит то же адрес, по которому можно найти ячейку с нужным операндом.

Такой способ адресации называться косвенным. При косвенной адресации количество ячеек с адресами других ячеек может быть несколько (цепочка).

Количество звеньев (или ступеней перехода) называется глубиной косвенной адресации.

Все выше приведенные типы адресации касались одного операнда. А как же быть в случае с несколькими операндами или говоря другим языком – массивами? Тогда обычно указывается адрес массива и номер (индекс) элемента. Базовый (начальный) адрес указывается в команде. Кроме этого, там же, в команде, есть поле, где указан номер регистра, в котором лежит значение индекса или номер ячейки в массиве относительно начального адреса. Тогда адрес каждой ячейки массива будет получаться из суммы начального адреса и того, что содержит указанный регистр. Такая фигня называется модификацией адресов. Кроме того, существует тип адресации, когда в регистре лежит начальный адрес. В команде указан адрес этого регистра, а так же записано смещение относительно начального адреса. Все остальные адреса операндов будут получены из суммы адреса и смещения. Такой вот тип адресации называется относительным.

Ну что, сложно? Нет, это еще не сложно! Сложно будет сейчас :). При относительной адресации можно еще и модифицировать адреса. В этом случае адрес будет равен сумме начального адреса плюс смещение плюс содержимое индексного регистра.

Если система использует несколько типов адресации, то в команде обязательно записывается, какой способ будет применен в данный момент. Говоря языком ученым, в команде указывается признак адресации в поле признака операции.

Виды адресации операндов в памяти

Прямая адресация — это простейший вид адресации операнда в памяти, так как эффективный адрес содержится в самой команде и для его формирования не используется никаких дополнительных источников или регистров. Эффективный адрес берется непосредственно из поля смещения машинной команды, которое может иметь размер 8, 16, 32 бита. Это значение однозначно определяет байт, слово или двойное слово в сегменте данных. Прямая адресация может быть двух типов.

· Относительная прямая адресация используется в командах условных переходов для указания относительного адреса перехода. Относительность такого пе- рехода заключается в том, что в поле смещения машинной команды содержится 8-, 16- или 32-разрядное значение, которое в результате работы команды будет складываться с содержимым регистра указателя команд IP/EIP. В результате такого сложения получается адрес, по которому и осуществляется переход.

· Абсолютная прямая адресация — в этом случае эффективный адрес является частью машинной команды, но формируется этот адрес только из значения поля смещения в команде. Для формирования физического адреса операнда в памяти процессор складывает это поле со сдвинутым на четыре бита значением сегментного регистра. Однако такая адресация применяется редко — обычно ячейкам в программе присваиваются символические имена. В процессе трансляции ассемблер вычисляет и подставляет значения смещений этих имен в поле смещения формируемой им машинной команды (см. главу 3). В итоге получается, что машинная команда прямо адресует свой операнд, имея, фактически, в одном из своих полей значение эффективного адреса.

Остальные виды адресации относятся к косвенным. Слово косвенный в названии этих видов адресации означает, что в самой команде может находиться лишь часть эффективного адреса, а остальные его компоненты находятся в регистрах, на которые указывают своим содержимым байт mod r/m и, возможно, байт sib. Косвенная адресация имеет следующие разновидности:

· Косвенная базовая (или регистровая) адресация. Эффективный адрес операнда может находиться в любом из регистров общего назначения, кроме SP/ESP и ВР/ЕВР (это специальные регистры для работы с сегментом стека). Синтаксически в команде этот режим адресации выражается заключением имени регистра в квадратные скобки. К примеру, команда mov ax,[ecx] помещает в регистр АХ содержимое слова по адресу сегмента данных со смещением, хранящимся в регистре ЕСХ. Так как содержимое регистра легко изменить в ходе работы программы, данный способ адресации позволяет динамически назначить адрес операнда для некоторой машинной команды. Это очень полезно, например, для организации циклических вычислений и для работы с различными структурами данныхтипа таблиц или массивов.

· Косвенная базовая адресация со смещением является дополнением предыдущего вида адресации и предназначена для доступа к данным с известным смещением относительно некоторого базового адреса. Этот вид адресации удобно использовать для доступа к элементам структур данных, когда смещение элементов известно заранее на стадии разработки программы, а базовый (начальный) адрес структуры должен вычисляться динамически на стадии выполнения программы. Модификация содержимого базового регистра позволяет обращаться к одноименным элементам различных экземпляров однотипных структур данных. К примеру, команда mov ax,[edx+3h] пересылает в регистр АХ слово из области памяти по адресу, определяемому содержимым EDX + 3h. Команда mov ax,mas[dx] пересылает в регистр АХ слово по адресу, определяемому содержимым DX плюс значение идентификатора mas (не забывайте, что транслятор присваивает каждому идентификатору значение, равное смещению этого идентификатора относительно начала сегмента данных).

· Косвенная индексная адресация со смещением очень похожа на косвенную базовую адресацию со смещением. Здесь также для формирования эффективного адреса используется один из регистров общего назначения. Но индексная адресация обладает одной интересной особенностью, которая очень удобна для работы с массивами. Она связана с возможностью так называемого масштабирования содержимого индексного регистра.

· Косвенная базовая индексная адресация. Ээффективный адрес формируется как сумма содержимого двух регистров общего назначения: базового и индексного. В качестве этих регистров могут применяться любые регистры общего назначения, при этом часто содержимое индексного регистра масштабируется.

· Косвенная базовая индексная адресация со смещением. является дополнением косвенной индексной адресации. Эффективный адрес формируется как сумма трех составляющих: содержимого базового регистра, содержимого индексного регистра и значения поля смещения в команде.

Не нашли то, что искали? Воспользуйтесь поиском:

Организация и модели памяти, адресация

Память – способность объекта обеспечивать хранение данных.
Все объекты, над которыми выполняются команды, как и сами команды, хранятся в памяти компьютера.

Память состоит из ячеек, в каждой из которых содержится 1 бит информации, принимающий одно из двух значений: 0 или 1. Биты обрабатывают группами фиксированного размера. Для этого группы бит могут записываться и считываться за одну базовую операцию. Группа из 8 бит называется .

Байты последовательно располагаются в памяти компьютера.

  • 1 килобайт (Кбайт) = 2 10 = 1 024 байт
  • 1 мегабайт (Мбайт) = 2 10 Кбайт = 2 20 байт = 1 048 576 байт
  • 1 гигабайт (Гбайт) = 2 10 Мбайт = 2 30 байт = 1 073 741 824 байт
Читать еще:  Как написать электронный адрес пример

Для доступа к памяти с целью записи или чтения отдельных элементов информации используются идентификаторы , определяющие их расположение в памяти. Каждому идентификатору в соответствие ставится адрес . В качестве адресов используются числа из диапазона от 0 до 2 k -1 со значением k, достаточным для адресации всей памяти компьютера.Все 2 k адресов составляют адресное пространство компьютера .

Способы адресации байтов

Существует прямой и обратный способы адресации байтов.
При обратном способе адресации байты адресуются слева направо, так что самый старший (левый) байт слова имеет наименьший адрес.

Прямым способом называется противоположная система адресации. Компиляторы высокоуровневых языков поддерживают прямой способ адресации.

Объект занимает целое слово. Поэтому для того, чтобы обратиться к нему в памяти, нужно указать адрес, по которому этот объект хранится.

Организация памяти

Физическая память, к которой микропроцессор имеет доступ по шине адреса, называется оперативной памятью ОП (или оперативным запоминающим устройством — ОЗУ).
Механизм управления памятью полностью аппаратный, т.е. программа сама не может сформировать физический адрес памяти на адресной шине.
Микропроцессор аппаратно поддерживает несколько моделей использования оперативной памяти:

  • сегментированную модель
  • страничную модель
  • плоскую модель

В сегментированной модели память для программы делится на непрерывные области памяти, называемые сегментами . Программа может обращаться только к данным, которые находятся в этих сегментах.
Сегмент представляет собой независимый, поддерживаемый на аппаратном уровне блок памяти.

Сегментация — механизм адресации, обеспечивающий существование нескольких независимых адресных пространств как в пределах одной задачи, так и в системе в целом для защиты задач от взаимного влияния.

Каждая программа в общем случае может состоять из любого количества сегментов, но непосредственный доступ она имеет только к 3 основным сегментам и к 3 дополнительным сегментам, обслуживаемых 6 сегментными регистрами. К основным сегментам относятся:

  • Сегмент кодов ( .CODE ) – содержит машинные команды для выполнения. Обычно первая выполняемая команда находится в начале этого сегмента, и операционная система передает управление по адресу данного сегмента для выполнения программы. Регистр сегмента кодов ( CS ) адресует данный сегмент.
  • Сегмент данных ( .DATA ) – содержит определенные данные, константы и рабочие области, необходимые программе. Регистр сегмента данных ( DS ) адресует данный сегмент.
  • Сегмент стека ( .STACK ). Стек содержит адреса возврата как для программы (для возврата в операционную систему), так и для вызовов подпрограмм (для возврата в главную программу). Регистр сегмента стека ( SS ) адресует данный сегмент. Адрес текущей вершины стека задается регистрами SS:ESP .

Регистры дополнительных сегментов ( ES, FS, GS ), предназначены для специального использования.

Для доступа к данным внутри сегмента обращение производится относительно начала сегмента линейно, т.е. начиная с 0 и заканчивая адресом, равным размеру сегмента. Для обращения к любому адресу в программе, компьютер складывает адрес в регистре сегмента и смещение — расположение требуемого адреса относительно начала сегмента. Например, первый байт в сегменте кодов имеет смещение 0, второй байт – 1 и так далее.

Таким образом, для обращения к конкретному физическому адресу ОЗУ необходимо определить адрес начала сегмента и смещение внутри сегмента.
Физический адрес принято записывать парой этих значений, разделенных двоеточием

сегмент : смещение

Страничная модель памяти – это надстройка над сегментной моделью. ОЗУ делится на блоки фиксированного размера, кратные степени 2, например 4 Кб. Каждый такой блок называется страницей . Основное достоинство страничного способа распределения памяти — минимально возможная фрагментация. Однако такая организация памяти не использует память достаточно эффективно за счет фиксированного размера страниц.

Плоская модель памяти предполагает, что задача состоит из одного сегмента, который, в свою очередь, разбит на страницы.
Достоинства:

  • при использовании плоской модели памяти упрощается создание и операционной системы, и систем программирования;
  • уменьшаются расходы памяти на поддержку системных информационных структур.

В абсолютном большинстве современных 32(64)-разрядных операционных систем (для микропроцессоров Intel) используется плоская модель памяти.

Модели памяти

Директива .MODEL определяет модель памяти, используемую программой. После этой директивы в программе находятся директивы объявления сегментов ( .DATA, .STACK, .CODE, SEGMENT ). Синтаксис задания модели памяти

.MODEL модификатор МодельПамяти СоглашениеОВызовах

Параметр МодельПамяти является обязательным.

Основные модели памяти:

Модель памятиАдресация кодаАдресация данныхОпераци-
онная система
Чередование кода и данных
TINYNEARNEARMS-DOSДопустимо
SMALLNEARNEARMS-DOS, WindowsНет
MEDIUMFARNEARMS-DOS, WindowsНет
COMPACTNEARFARMS-DOS, WindowsНет
LARGEFARFARMS-DOS, WindowsНет
HUGEFARFARMS-DOS, WindowsНет
FLATNEARNEARWindows NT, Windows 2000, Windows XP, Windows VistaДопустимо

Модель tiny работает только в 16-разрядных приложениях MS-DOS. В этой модели все данные и код располагаются в одном физическом сегменте. Размер программного файла в этом случае не превышает 64 Кбайт.
Модель small поддерживает один сегмент кода и один сегмент данных. Данные и код при использовании этой модели адресуются как near (ближние).
Модель medium поддерживает несколько сегментов программного кода и один сегмент данных, при этом все ссылки в сегментах программного кода по умолчанию считаются дальними (far), а ссылки в сегменте данных — ближними (near).
Модель compact поддерживает несколько сегментов данных, в которых используется дальняя адресация данных (far), и один сегмент кода с ближней адресацией (near).
Модель large поддерживает несколько сегментов кода и несколько сегментов данных. По умолчанию все ссылки на код и данные считаются дальними (far).
Модель huge практически эквивалентна модели памяти large.

Особого внимания заслуживает модель памяти flat , которая используется только в 32-разрядных операционных системах. В ней данные и код размещены в одном 32-разрядном сегменте. Для использования в программе модели flat перед директивой .model flat следует разместить одну из директив:

Желательно указывать тот тип процессора, который используется в машине, хотя это не является обязательным требованием. Операционная система автоматически инициализирует сегментные регистры при загрузке программы, поэтому модифицировать их нужно только в случае если требуется смешивать в одной программе 16-разрядный и 32-разрядный код. Адресация данных и кода является ближней ( near ), при этом все адреса и указатели являются 32-разрядными.

Параметр модификатор используется для определения типов сегментов и может принимать значения use16 (сегменты выбранной модели используются как 16-битные) или use32 (сегменты выбранной модели используются как 32-битные).

Параметр СоглашениеОВызовах используется для определения способа передачи параметров при вызове процедуры из других языков, в том числе и языков высокого уровня (C++, Pascal). Параметр может принимать следующие значения:

При разработке модулей на ассемблере, которые будут применяться в программах, написанных на языках высокого уровня, обращайте внимание на то, какие соглашения о вызовах поддерживает тот или иной язык. Используются при анализе интерфейса программ на ассемблере с программами на языках высокого уровня.

Ссылка на основную публикацию
Adblock
detector