Foreversoft.ru

IT Справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способы адресации операндов в командах

Способы адресации операндов в командах

Исполнительный адрес — это номер ячейки памяти, к которой производится фактическое обращение.

В современных ЭВМ адресный код, как правило, не совпадает с исполнительным адресом.

Выбор способов адресации, формирования исполнительного адреса и преобразования адресов является одним из важнейших вопросов разработки ЭВМ. Рассмотрим способы адресации, используемые в современных ЭВМ :

1) Подразумеваемый операнд .

В команде может не содержаться явных указаний об операнде; в этом случае операнд подразумевается и фактически задается кодом операции команды.

2) Подразумеваемый адрес .

В команде может не содержаться явных указаний об адресе участвующего в операции операнда или адресе, по которому должен быть размещен результат операции, но этот адрес подразумевается.

3) Непосредственная адресация .

В команде содержится не адрес операнда, а непосредственно сам операнд. При непосредственной адресации не требуется обращения к памяти для выборки операнда и ячейки памяти для его хранения. Это способствует уменьшению времени выполнения программы и занимаемо­го ею объема памяти. Непосредственная адресация удобна для хранения различного рода констант.

4) Прямая адресация .

В адресной части команды может быть непосредственно указан испол­нительный адрес.

5) Относительная (базовая) адресация .

При этом способе адресации исполнительный адрес определяется как сумма адресного кода команды и базового адреса, как правило хранящегося в специальном регистре — регистре базы .

Относительная адресация позволяет при меньшей длине адресно­го кода команды обеспечить доступ к любой ячейке памяти. Для этого число разрядов в базовом регистре выбирают таким, чтобы можно было адресовать любую ячейку оперативной памяти, а адресный код команды используют для представления лишь сравнительно корот­кого «смещения». Смещение определяет положение операнда относи­тельно начала массива, задаваемого базовым адресом.

Лучший спонсор для вебмастеров ! Вы ещё не с нами ?!

6) Укороченная адресация .

Для уменьшения длины кода команды часто применяется так называемая укороченная адресация. Суть ее сводится к тому, что в команде задаются только младшие разряды адресов, а старшие разря­ды при этом подразумеваются нулевыми. Такая адресация позволяет использовать только небольшую часть фиксированных ячеек в начале всей адресуемой области памяти, и поэтому применяется лишь сов­местно с другими способами адресации.

Регистровая адресация является частным случаем укороченной, когда в качестве фиксированных ячеек с короткими адресами исполь­зуются регистры (ячейки сверхоперативной или местной памяти) про­цессора. Например, если таких регистров 16, то для адреса доста­точно четырех двоичных разрядов. Регистровая адресация наряду с сокращением длины адресов операндов позволяет увеличить скорость выполнения операций, так как уменьшается число обрашений к оперативной памяти.

7) Косвенная адресация .

Адресный код команды в этом случае указывает адрес ячейки памяти, в которой находится адрес операнда или команды. Косвенная адресация широко используется в малых и микроЭВМ, имеющих короткое ма­шинное слово, для преодоления ограничений короткого формата команды (совместно используются регистровая и косвенная адресация).

8) Адресация слов переменной длины .

Эффективность вычислительных систем, предназначенных для обработки данных, повышается, если имеется возможность выполнять операции со словами переменной длины. В этом случае в машине может быть предусмотрена адресация слов переменной длины, которая обычно реализуется путем указания в команде местоположения в

памяти начала слова и его длины.

9) Стековая адресация .

Стековая память, реализующая безадресное задание операндов, особенно широко используется в микропроцессорах и миниЭВМ.

Стек представляет собой группу последовательно пронумерован­ных регистров или ячеек памяти, снабженных указателем стека, в котором автоматически при записи и считывании устанавливается номер (адрес) последней занятой ячейки стека (вершины стека). При операции записи заносимое в стек слово помещается в следующую по порядку свободную ячейку стека, а при считывании из стека извле­кается последнее поступившее в него слово.

10) Автоинкрементная и автодекрементная адресации .

Поскольку регистровая косвенная адресация требует предвари­тельной загрузки регистра косвенным адресом из оперативной памяти, что связано с потерей времени, такой тип адресации особенно эффективен при обработке массива данных, если имеется механизм автоматического приращения или уменьшения содержимого регистра при каждом обращении к нему. Такой механизм называется соответственно автоинкрементной и автодекрементной адресацией. В этом случае достаточно один раз загрузить в регистр адрес первого об­рабатываемого элемента массива, а затем при каждом обращении к регистру в нем будет формироваться адрес следующего элемента массива.

При автоинкрементной адресации сначала содержимое регистра используется как адрес операнда, а затем получает приращение, равное числу байт в элементе массива. При автодекрементной адресации сначала содержимое указанного в команде регистра уменьшает­ся на число байт в элементе массива, а затем используется как адрес операнда.

Автоинкрементная и автодекрементная адресации могут рассмат­риваться как упращенный вариант индексации — весьма важного механизма преобразования адресных частей команд и организации вычислительных циклов, поэтому их часто называют автоиндексацией.

Для реализуемых на ЭВМ методов решения математических задач и обработки данных характерна цикличность вычислительных про­цессов, когда одни и те же процедуры выполняются над различными операндами, упорядоченно расположенными в памяти. Поскольку операнды, обрабатываемые при повторениях цикла, имеют разные адреса, без использования индексации требовалось бы для каждого повторе­ния составлять свою последовательность команд, отличающихся адресными частями.

Программирование циклов существенно упрощается, если после каждого выполнения цикла обеспечено автоматическое изменение в соответствующих командах их адресных частей согласно расположению в памяти обрабатываемых операндов. Такой процесс называется моди­фикацией команд, и основан на возможности выполнения над кодами команд арифметических и логических операций.

Управление вычислительным циклом должно обеспечивать повто­рение цикла нужное число раз, а затем выход из него.

Автоматическая модификация команд и управление вычислитель­ными циклами в современных ЭВМ обеспечиваются механизмом индексации. Это понятие включает в себя специальный способ кодирования команд, командные и аппаратурные средства задания и выполнения модификации команд и управления вычислительными циклами. Упомяну­тые средства часто называют индексной арифметикой.

Для выполнения индексации в машину вводятся так называемые индексные регистры. Исполнительный адрес при индексации формиру­ется путем сложения адресного кода команды (смещения) с содержи­мым индексного регистра (индексом), а при наличии базирования — и с базовым адресом.

Для управления индексацией используются команды, задающие операции над содержимым индексных регистров — команды индексной арифметики. Можно отметить основные виды индексных операций:

Читать еще:  Правильное написание электронного адреса

— засылка в соответствующий индексный регистр начального значения индекса;

— проверка окончания циклических вычислений.

Способы адресации операндов в команде

Вопрос о том, каким образом в адресном поле команды может быть указано местоположение операндов, считается одним из центральных при разработке архитектуры ВМ. С точки зрения сокращения аппаратурных затрат очевидно стремление разработчиков уменьшить длину адресного поля при сохранении возможностей доступа ко всему адресному пространству. С другой стороны, способ задания адресов должен способствовать максимальному сближению конструктов языков программирования высокого уровня и машинных команд. Все это привело к тому, что в архитектуре системы команд любой ВМ предусмотрены различные способы адресации операндов.

Приступая к рассмотрению способов адресации, вначале определим понятия исполнительный и адресный код.

Исполнительным адресом операнда (Аисп) называется двоичный код номера ячейки памяти, служащей источником или приемником операнда. Этот код подается на адресные входы запоминающего устройства (ЗУ), и по нему происходит фактическое обращение к указанной ячейке. Если операнд хранится не в основной памяти, а в регистре процессора, его исполнительным адресом будет номер регистра.

Адресный код команды (Ак) – это двоичный код в адресном поле команды, из которого необходимо сформировать исполнительный адрес операнда.

В современных ВМ исполнительный адрес и адресный код, как правило, не совпадают, и для доступа к данным требуется соответствующее преобразование. Способ адресации – это способ формирования исполнительного адреса операнда по адресному коду команды. Способ адресации существенно влияет на параметры процесса обработки информации. Одни способы позволяют увеличить емкость адресуемой памяти без удлинения команды, но снижают скорость выполнения операции, другие – ускоряют операции над массивами данных, третьи – упрощают работу с подпрограммами и т.д. В сегодняшних ВМ обычно имеется возможность приложения нескольких различных способов адресации операндов к одной и той же операции.

Чтобы устройство управления вычислительной машины могло определить, какой именно способ адресации принят в данной команде, в разных ВМ используются различные приемы. Часто разным способам адресации соответствуют и разные коды операции. Другой подход – это добавление в состав команды специального поля способа адресации, содержимое которого определяет, какой из способов адресации должен быть применен. Иногда в команде имеется нескольких полей – по одному на каждый адрес. Отметим, что возможен также вариант, когда в команде вообще отсутствует адресная информация, то есть имеет место неявная адресация. При неявной адресации адресного поля либо просто нет, либо оно содержит не все необходимые адреса – отсутствующий адрес подразумевается кодом операции. Так, при исключении из команды адреса результата подразумевается, что результат помещается на место второго операнда. Неявная адресация применяется достаточно широко, поскольку позволяет сократить длину команды. Рассмотрим более подробно некоторые из способов адресации операндов.

Принепосредственной адресации (НА) в адресном поле команды вместо адреса содержится непосредственно сам операнд. Этот способ может применяться при выполнении арифметических операций, операций сравнения, а также для загрузки констант в регистры.

Когда операндом является число, оно обычно представляется в дополнительном коде. При записи в регистр, имеющий разрядность, превышающую длину непосредственного операнда, операнд размещается в младшей части регистра, а оставшиеся свободными позиции заполняются значением знакового бита операнда.

Помимо того, что в адресном поле могут быть указаны только константы, еще одним недостатком данного способа адресации является то, что размер непосредственного операнда ограничен длиной адресного поля команды, которое в большинстве случаев меньше длины машинного слова.

Регистровая адресация (РА). Адресное поле инструкции указывает не на ячейку памяти, а на регистр процессора. Идентификатор регистра в дальнейшем будем обозначать буквой R. Обычно размер адресного поля в данном случае составляет три или четыре бита, что позволяет указать соответственно на один из 8 или 16 регистров общего назначения (РОН).

Двумя основными преимуществами регистровой адресации являются: короткое адресное поле в команде и исключение обращений к памяти. Малое число РОН позволяет сократить длину адресного поля команды.

Рис. 1.13. Регистровая адресация

При прямой адресации адресный код прямо указывает номер ячейки памяти, к которой производится обращение (рис. 1.14), т.е. адресный код совпадает с исполнительным адресом.

Рис. 1.14. Прямая адресация

При всей простоте использования способ имеет существенный недостаток – ограниченный размер адресного пространства.

Одним из путей преодоления проблем свойственных прямой адресации является косвенная адресация. При этом способе содержимое адресного поля команды остается неизменным, в то время как косвенный адрес в процессе выполнения программы можно изменять.

При косвенной адресации в адресном поле команды указывается адрес ячейки (или номер РОН), в свою очередь, содержащей полноразрядный адрес операнда (рис.1.15). В качестве недостатка можно отметить необходимость в двукратном к памяти.

Рис. 1.15. Косвенная адресация

Кроме вышеперечисленных способов адресации существуют также индексная адресация, относительная индексная адресация, блочная адресация, стековая адресация и др. Частота использования различных способов адресации существенно зависит от типа АСК. Для машин со стековой архитектурой, основным способом адресации является стековая. Для ВМ с аккумуляторной архитектурой – прямая и непосредственная и т.д.

Дата добавления: 2015-07-18 ; просмотров: 972 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Способы адресации

Система адресации обеспечивает в МП устройствах доступ к операндам, хранящимся в устройствах памяти, внутренних программно- доступных регистрах и внешних устройствах через порты ввода/вывода. Длина формата команды (общее количество бит в коде команды) определяет скорость выполнения команды и зависит от способа адресации операндов. Способы адресации играют большую роль в организации управления ходом выполнения программы, во многом определяют скорость обработки информации. Существуют следующие основные способы адресации:

Прямая адресация – исполнительный адрес размещается в адресном поле команды. В этом способе непосредственно используется счетчик команд и аккумулятор МП. При прямой адресации содержимое счетчика команд передается на ША и из адресуемой ячейки выбирается очередная команда, поступающая в устройство управления МП. С помощью прямой адресации в АЛУ может вызываться и операнд. Для этого на ША передается адрес ячейки памяти, содержащийся в команде. При необходимости изменения последовательного порядка выполнения программы адресуется ячейка памяти, содержащая адрес условного или безусловного перехода. Команда, содержащая прямой адрес, занимает 2-3 ячейки памяти, что соответственно требует и 2-3 обращений к памяти. Еще одно обращение может потребоваться для непосредственного вызова операнда.

Читать еще:  Диапазоны адресов подсетей

С использованием прямой адресации могут быть загружены только аккумулятор и регистры выделенные для хранения косвенного адреса (в МП типа К580, i — 8080 и 8085 это регистровая пара Н). В современных микроконтроллерах для косвенной адресации обычно используется несколько регистровых пар.

Пример: LDA 0A00— эта команда загружает аккумулятор (регистр А) содержимым ячейки памяти 0А00. Формат этой команды:

3A0A
Код операции LDAМладший байт адресаСтарший байт адреса

Преимущества этого способа адресации – простота и наглядность, не требуется вычисление исполнительного адреса.

Недостаток – низкая скорость обработки информации, кроме того, во многих микропроцессорных системах для поля адреса в формате команды выделяется небольшое число битов, что ограничивает доступный для данного способа объем адресного пространства памяти.

Непосредственная адресация— данные включены в команду и собственно обращения к памяти при этом способе загрузки регистров не требуется. Команда вместо указания адреса операнда содержит этот операнд непосредственно. Непосредственная адресация используется при операциях с константами, исполнение команд с непосредственной адресацией отличается быстротой.

Пример: MVI C D3— эта команда загружает регистр С значением D3 (число представлено в шестнадцатеричном коде, т.е. является 8- разрядным двоичным числом).

Косвенная адресация– адресное поле команды указывает не адрес операнда, а лишь адрес ячейки, в которой хранится косвенный адрес, по которому можно получить операнд. В МП косвенная адресация обычно является неявной регистровой. В этом случае команда предписывает выполнить операцию над операндом, адрес которого содержится в регистрах общего назначения (обычно для этого выделяются определенные регистры блока РОН). Так, команда MOV REG,M загружает любой регистр из ячейки памяти, адрес которой содержится в регистровой паре H,L. Команда LDAX загружает аккумулятор с использованием адреса, содержащегося в регистровой паре B или D (используя регистры B или D можно осуществить косвенную загрузку только аккумулятора).

Пример: MOV D,M— эта команда загружает регистр D из ячейки памяти, адрес которой содержится в регистрах H,L. Отметим, что логически для процессора ячейка памяти с адресом, содержащимся в регистрах H,L эквивалентна регистру с индексом М (ячейку памяти с этим адресом называют регистром М. Естественно, адрес этой ячейки памяти меняется с изменением содержимого регистров H,L, а сам «регистр М» физически находится вне процессора).

Преимущество косвенной адресации в том, что косвенный адрес операнда содержит больше битов, чем число битов в адресном поле команды, т.е. доступен больший объем адресного пространства памяти. Недостатком является увеличение времени для извлечения операнда по сравнению со способом прямой адресации.

Относительная индексная адресация (автоинкрементная и автодекрементная) – базовый исполнительный адрес вычисляется так же, как и при регистровой косвенной адресации, а следующие исполнительные адреса получаются увеличением или уменьшением текущего адреса операнда на определенную величину после каждой обработки адреса. Обычно такая адресация используется при обработке массивов данных. В этом случае список данных представляется как совокупность индексных операндов. Операнды с индексами помещаются в соседних ячейках памяти. Для организации доступа к этим ячейкам памяти используются индексные регистры аналогичные в данном случае счетчику команд. Для двумерного массива истинный адрес

ИА = [базовый адрес] + (содержимое индексных регистров)

Для перебора операндов с индексами осуществляется автоиндексация, т.е. добавление к содержимому регистров плюс или минус единицы. Разновидностью автоиндексации является стековая адресация. В этом случае автоиндексный регистр является указателем стека, а область памяти им адресуемая, – стеком. Принцип стековой адресации заключается в следующем: после каждой засылки в стек, содержимое указателя стека увеличивается, а после каждого изъятия из стека — уменьшается на единицу.

Относительная адресация– исполнительный адрес получается сложением адресного поля команды с содержимым базового регистра процессора. Это сложение производится в специальном сумматоре. Относительная адресация применяется в командах перехода.

Страничная адресация– память делится на ряд страниц одинаковой длины. Адресация страниц осуществляется по содержимому программного счетчика или регистра страниц. Адресация памяти внутри страниц производится адресом, который содержится в команде.

Обращение к подпрограммам.Ряд процедурв ЭВМ часто используется различными программами или одной и той же программой многократно. Такие процедуры могут быть стандартизированы и оформлены в виде подпрограмм.

В этом случае вся программа может быть представлена в виде объединения основной программы и подпрограмм. Обращение к подпрограмме происходит из основной программы.

Перед обращением к подпрограмме необходимо запомнить адрес возврата в основную программу. Адрес возврата обычно запоминается в первой ячейке выполняемой подпрограммы. При этом возврат осуществляется по команде безусловного перехода с косвенной адресацией по содержимому первого слова подпрограммы.

Наиболее эффективной адресацией при обращении к подпрограммам является стековая адресация. Адрес возврата записывается в вершину стека, а после выполнения подпрограммы выталкивается из стека и размещается в счетчике команд. Часто в стек вводится содержимое не только счетчика команд, но и всех регистров МП. При использовании стека характерной особенностью выхода из подпрограммы является использование безадресной команды ВОЗВРАТ. По этой команде процессор извлекает из памяти адрес, откуда произошел вызов подпрограммы, и переходит к команде, непосредственно следующей за этим адресом. Затем программа выполняется в обычном режиме.

Применение подпрограмм позволяет придать программе свойство структурированности. Функционально законченную процедуру удобно оформлять в виде подпрограммы даже если в основной программе она используется только один раз. Например, подпрограмма вывода кода управления семисегментным индикатором, подпрограмма генерации звукового сигнала и т.д. Из подпрограмм- библиотек удобно конструировать разнообразные программы.

Не нашли то, что искали? Воспользуйтесь поиском:

Способы адресации операндов в командах

5.1. Способы адресации в командах языка Assembler .

Большинство команд процессора вызываются с аргументами, которые в ассемблере принято называть операндами. Например: команда сложения содержимого регистра с числом требует задания двух операндов – содержимого регистра и числа. Далее рассмотрены все существующие способы задания адреса хранения операндов – способы адресации.

Все имеющиеся способы адресации можно условно разделить на три группы: регистровая, непосредственная и с указанием адреса памяти. При этом адрес памяти можно задавать по-разному: прямым указанием символического обозначения ячейки памяти, указанием регистра, в котором хранится требуемый адрес, или и того и другого. Таким образом, третья группа включает, в сущности, целый ряд способов адресации. Они обычно носят названия: прямая, базовая, индексная, базово-индексная, а также базовая, индексная или базово-индексная со смещением.

Читать еще:  Адресация в сети internet

5.1.1. Регистровая адресация.

Операнды могут располагаться в любых регистрах общего назначения и сегментных регистрах. Для этого в тексте программы указывается название соответствующего регистра, например: команда, копирующая в регистр АХ содержимое регистра ВХ, записывается как

5.1.2. Непосредственная адресация.

Некоторые команды (все арифметические, кроме деления) позволяют указывать один из операндов непосредственно в тексте программы. Например: команда

помещает в регистр АХ число 2.

5.1.3. Прямая адресация.

В команде указывается символическое обозначение ячейки памяти, над содержимым которой требуется выполнить операцию.

mov DL,meml ;Содержимое байта памяти с символическим именем meml

;пересылается в DL

Если нужно обратиться к ячейке памяти с известным абсолютным адресом, то этот адрес можно непосредственно указать в качестве операнда. Предварительно необходимо настроить какой-либо сегментный регистр на начало того участка памяти, в котором находится искомая ячейка. Пример:

mov AX, 0 ;Настроим сегментный регистр ES на

mov ES,AX ;самое начало памяти (адрес 0)

mov AX,ES:[0] ;АХ=содержимое слова с адресом 0000h:0000h

mov DX,ES:[2] / D Х=содержимое слова с адресом 0000h:0002h

Заметим, что в этом случае сегментный регистр надо указывать обязательно. Все остальные способы адресации относятся к группе косвенной адресации памяти.

5.1.4. Базовая и индексная адресация памяти.

Относительный адрес ячейки памяти находится в регистре, обозначение которого заключается в квадратные скобки. При использовании регистров ВХ или ВР адресацию называют базовой, при использовании регистров SI или DI — индексной. При адресации через регистры ВХ, SI или DI в качестве сегментного регистра подразумевается DS; при адресации через ВР — регистр SS. Таким образом, косвенная адресация через регистр ВР предназначена для работы со стеком. Однако при необходимости можно явно указать требуемый сегментный регистр. Еще раз отметим, что во всех базовых и индексных способах адресации операндом является содержимое ячейки памяти, адрес которой находится в том или ином регистре или вычисляется сложением содержимого двух регистров.

mov AL,[ВХ] ;Сегментный адрес предполагается в DS, смещение в ВХ

mov DL,ES:[ВХ] ;Сегментный адрес в ES, смещение в ВХ

mov DX,[ВР] ;Сегментный адрес в SS, смещение в ВР

mov AL,[DI] ;Сегментный адрес в DS, смещение в DI

5.1.5. Базовая и индексная адресации памяти со смещением.

Относительный адрес операнда определяется суммой содержимого регистра (ВХ, ВР, SI или DI) и указанного в команде числа, которое называют смещением.

mas db 1,2,5,3,7,9,8,3,4 ;Массив символов

mov BX,2 ;ВХ=индекс элемента в массиве

mov D L , mas[BX] ;В D L заносится третий элемент массива

В этом примере относительный адрес адресуемого элемента массива mas вычисляется как сумма содержимого ВХ (2) и значения символического обозначения mas, которое совпадает с относительным адресом начала массива mas. В результате в регистр D L будет загружен элемент массива mas с индексом 2, т.е. число 5. Предполагается, что базовый адрес сегмента, в который входит массив mas, загружен в DS. Такой же результат даст такая последовательность команд:

mov BX,offset mas ;ВХ=относительный адрес ячейки mas

Здесь относительный адрес адресуемого элемента массива mas вычисляется как сумма содержимого регистра ВХ и дополнительного смещения, задаваемого константой 2. Последняя команда может быть записана в следующем виде:

Адресация с помощью регистров SI и DI осуществляется аналогично. При использовании регистра ВР следует помнить, что в качестве сегментного регистра по умолчанию подразумевается регистр SS.

5.1.6. Базово-индексная адресация памяти.

Относительный адрес операнда определяется суммой содержимого базового и индексного регистров.

Допускается использование следующих пар:

Если в качестве базового регистра выступает ВХ, то в качестве сегментного подразумевается DS (первые две команды); при использовании в качестве базового регистра ВР сегментным регистром по умолчанию назначается SS (вторые две команды). При необходимости можно явно указать требуемый сегментный регистр.

mov ВХ,[ВР][SI] ;В ВХ засылается слово из стека(сегментный

;адрес в SS), а смещение вычисляется как

;сумма содержимого ВР и SI

mov BX,ES:[BP][SI] ;В ВХ засылается слово из сегмента, адрес которого

;находится в ES, а смещение вычисляется как

;сумма содержимого ВР и SI

mov ES:[BX+DI],АХ ;В ячейку памяти, сегментный адрес которой

;хранится в ES, а смещение равно сумме

;содержимого ВХ и DI, пересылается содержимое АХ

5.1.7. Базово-индексная адресация памяти со смещением.

Относительный адрес операнда определяется суммой трех величин: содержимого базового и индексного регистров, а также дополнительного смещения. Допускается использование тех же пар регистров, что и в базово-индексном способе; так же действующие правила определения сегментных регистров.

mov mas[ВХ][SI],10 ;Число 10 пересылается в ячейку памяти,

;сегментный адрес которой хранится в DS, а

;смещение равно сумме содержимого

;ВХ и SI и смещения ячейки mas

mov AX,[BP+2+DI] ;В АХ пересылается из стека слово,

;смещение которого равно сумме

;ВР, DI и «добавки» 2

Значительная часть рассмотренных выше способов адресации служит для обращения к ячейкам памяти. Таким образом, один и тот же конечный результат можно получить с помощью различных способов адресации. Например, все три приведенные ниже команды:

mov DL,mas[BX] ;В BХ заранее занесено число 3

mov DL,[SI][ВХ] ;В BХ заранее занесено число 3, а в SI — смещение mas

приведут к загрузке в регистр DL четвертого элемента массива mas (если выполняются описанные в комментариях условия). Однако команды с использованием различных способов адресации занимают различный объем памяти и выполняются за разное время. Так, первая из приведенных выше команд потребует для выполнения 15 машинных тактов, вторая — 18, а третья — 16. Разница невелика, однако при многократном выполнении команд в циклах суммарный эффект может быть значителен. С другой стороны, первые две команды занимают в памяти по 4 байта, а третья — только 2. Таким образом, тщательный выбор способов адресации позволяет в какой- то степени оптимизировать программы по времени выполнения или требуемой памяти, а иногда и по тому и по другому.

Ссылка на основную публикацию
Adblock
detector