Foreversoft.ru

IT Справочник
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основы ip адресации

Основы IP-адресации

Налаживаем взаимодействие между компьютерами: настройка, IP-адресации и маршрутизации

Итак, мы выбрали набор протоколов TCP/IP и установили его (инсталлировали соответствующее программное обеспечение). Заметим, что в современных операционных системах этот протокол устанавливается по умолчанию; более того, удалить его, например, из Windows XP или Windows Server 2003 обычным способом невозможно (кнопка Удалить в свойствах сетевых подключений неактивна).

К сожалению, одной только установки протокола TCP/IP будет недостаточно. Стек не заработает, пока в нашей сети не будет правильным образом настроена
IP-адресация и маршрутизация. (Опять сравним работу сети с работой почты: как сможет почтальон доставить письмо адресату, если дороги и транспорт хотя и работают, но на домах нет номеров, а почтовые отделения не знают, как пересылать письма из одного города в другой?)

Поэтому сейчас мы должны узнать, что такое IP-адрес и маска подсети, выяснить, как оба этих параметра используются для определения локальных или удаленных IP-сетей, и на конкретных примерах ознакомиться с тем, как компьютеры и маршрутизаторы доставляют IP-пакеты из одной сети в другую.

Первым обязательным параметром в свойствах протокола TCP/IP любого компьютера является его IP-адрес.

IP-адрес– это уникальная 32-разрядная последовательность двоичных цифр, с помощью которой компьютер однозначно идентифицируется в IP-сети. (Напомним, что на канальном уровне в роли таких же уникальных адресов компьютеров выступают MAC-адреса сетевых адаптеров, невозможность совпадения которых контролируется изготовителями на стадии производства.)

Будет обсуждаться наиболее распространенная версия 4 протокола IP, или IPv4. Однако уже создана следующая версия протокола – IP версии 6 (IPv6), в которой IP-адрес представляется в виде 128-битной последовательности двоичных цифр.

Для удобства работы с IP-адресами 32-разрядную последовательность обычно разделяют на 4 части по 8 битов (на октеты), каждый октет переводят в десятичное число и при записи разделяют эти числа точками. В таком виде (это представление называется «десятичные числа с точками», или, по-английски, «dotted-decimal notation») IP-адреса занимают гораздо меньше места и намного легче запоминаются (табл. 8.1).

Чтобы быстро осуществлять подобное преобразование в уме (что сетевым администраторам требуется нередко, а калькулятор не всегда под рукой), полезно запомнить следующую таблицу. В ней приведены десятичные значения степеней числа 2 с показателем, равным порядковому номеру бита в октете (напомним – нумерация битов производится справа налево и начинается с нуля):

Запомнив такую таблицу, несложно в уме преоб-разовывать октеты в десятичные числа и обратно.

Десятичное число легко вычисляется как сумма цифр, соответствующих ненулевым битам в октете, например:

10101101 -> 128 • 1 + 64 • 0 + 32 • 1 + 16 • 0 + 8 • 1 + 4•1 + 2• 0 + 1•1 = 173.

Несколько сложнее перевести десятичное представление в двоичное, но при некоторой тренировке это также не представляет проблем. Например:

201 -> 128 • 1 + 64 • 1 + 32 • 0 + 16 • 0 + 8 • 1 + 4 • 0 + 2 • 0 + 1 • 1 = 11001001.

Однако одного только IP-адреса компьютеру для работы в сети TCP/IP недостаточно. Вторым обязательным параметром, без которого протокол TCP/IP работать не будет, является маска подсети.

Маска подсети– это 32-разрядное число, состоящее из идущих вначале единиц, а затем – нулей, например (в десятичном представлении) 255.255.255.0 или 255.255.240.0.

Маска подсети играет исключительно важную роль в IP-адресации и маршрутизации. Чтобы понять значение этого параметра, вспомним, что сеть ARPANet строилась как набор соединенных друг с другом гетерогенных сетей. Для правильного взаимодействия в такой сложной сети каждый участник должен уметь определять, какие IP-адреса принадлежат его локальной сети, а какие – удаленным сетям.

Здесь и используется маска подсети, с помощью которой производится разделение любого IP-aдpeca на две части: идентификатор сети (Net ID) и идентификатор узла (Host ID). Такое разделение делается очень просто: там, где в маске подсети стоят единицы, находится идентификатор сети, а где стоят нули – идентификатор узла.

Например, в IP-адресе 192.168.5.200 при использовании маски подсети 255.255.255.0 идентификатором сети будет число 192.168.5.0, а идентификатором узла – число 200. Стоит нам поменять маску подсети, скажем, на число 255.255.0.0, как и идентификатор узла, и идентификатор сети изменятся на 192.168.0.0 и 5.200, соответственно, и от этого, как мы дальше увидим, иначе будет вести себя компьютер при посылке IP-пакетов.

Дата добавления: 2014-11-25 ; Просмотров: 1469 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

IP адресация — принцип работы

В данной статье мы посмотрим как работает IP адресация. Увидим как сетевые устройства определяют находится-ли устройство, с которым требуется установить связь в одной сети с ними. В завершение статьи, мы кратко рассмотрим два протокола LLMNR и DNS, предназначенных для связи IP адресации с именами компьютеров.

Оглавление

Основы IP адресации

В реальной жизни, когда вы отправляете кому-либо письмо, на конверте вы должны указать адрес получателя, а также свой адрес (адрес отправителя). Без этого писмо не найдет своего получателя и вы не сможете получить ответ на это письмо. То-же самое происходит в компьютеных сетях — для того, чтоб один компьютер отправил сообщение другому компьютеру, он должен знать адрес компьютера-получателя, а также предоставить информацию о своем адресе для получения ответа.

В интернете IP адресация используется посеместно. Когда вы постите в соц сетях, смотрите на Ютубе видео, или загружаете программы и не важно компьютер у вас, или смартфон — везде, для связи используется IP адресация.

Для идентификации компьютера, достаточно знать два параметра: IP адрес, и маску сети. Например, IP: 10.10.1.1 MASK: 255.255.255.0.

IP адрес — это всего-лишь абстракция того, что компьютер видит на самом деле. IPv4 адресса — 32 битные числа, что означает, что они состоят из комбинации 32 нулей и единиц для удобства чтения разделенных на четыре октета. IPv4 адрес для компьютера выглядит так: 00001010.00001010.00000001.00000001

Обратите внимание: Каждый из четырех октетов может принимать значение от 0 до 255 (255=2^8 — 1).

Если вы хотите преобразовать IP адрес, записаный в десятичной нотации в ее двоичный эквивалент, можно составить таблицу, как показано ниже.

Рассмотрим пример с IP адресом 192.168.2.102

Октет 1Октет 2Октет 3Октет 4
Число в десятичном форматеЧисло в двоичном формате1921682102
1281000000011
64100000011
3210000011
1610000
810001
41001
21011
11

Каждый из октетов может состоять только из суммы чисел первой, или второй колонки таблицы, только для десятичных чисел используется обычная арифметрика, а для двоичных логическая. Например, для получения октета со значением 192 = 128 + 64, или 1000000 & 1000000 = 1100000. Оба числа, 192 и 1100000 идентичны, только записаны в различных системах счисления. Также само вычисляется 168 — это сумма 128 + 32 + 1 и так далее. Если просуммировать все числа первой колонки, получится число 255, или в двоичном эквиваленте 11111111. 256 — это будет следующий, девятый разряд.

  1. Определяем из суммы каких чисел состоят октеты нашего IP адреса:
    • Первый октет: 128 + 64 = 192
    • Второй октет: 128 + 32 + 8 = 168
    • Третий октет: 2 не требуется суммировать
    • Четвертый октет: 64 + 32 + 4 + 2 = 100
  2. Записываем октеты в двоичном формате: 11000000.10101000.00000010.01100110.

Обратите внимание, что каждый октет обязательно должен состоять из восьми цифр. Если у вас получилоь число меньше чем нужно, недостающие символы заполните нулями слева. Например, число 2 = 10, но записываем мы 00000010.

Маска подсети

IP адрес состоит из двух частей: адрес подсети и адрес хоста. Маска подсети позволяет компьютеру отделить эти две составляющие. Обычно маска подсети выглядит так: 255.255.255.0, что в двоичном эквиваленте выглядит так: 11111111.11111111.11111111.00000000. Определение происходит путем наложения в двоичном формате маски подсети на IP адрес:

11000000.10101000.00000000.00000001
11111111.11111111.11111111.00000000
11000000.10101000.00000000.00000000

В маске подсети, единицы обозначают адрес подсети, а нули — адрес хоста. Вы видите, что в приведенном выше примере первые три октета определяют адрес сети, а четвертый октет — определяет адрес хоста внутри этой сети.

Путем сравнения IP адресов и масок подсетей хостов мы можем определить, находятся-ли эти хосты внутри одной сети. Для определения используют побитовое сложение:

  • компьютеру 1 нужно отправить сообщение компьютеру 2.
  • компьютер1 имеет IP адрес 192.168.0.1 и маску подсети 255.255.255.0
  • компьютер2 имеет IP адрес 192.168.0.2 и маску подсети 255.255.255.0

компьютер1 производит побитовое сложение своего IP адреса и маски подсети.

Обратите внимание: При побитовом сложении, если оба бита равны 1 — результат будет 1, в противном случае результат будет 0.

11000000 10101000 00000000 00000001
11111111 11111111 11111111 00000000

11000000 10101000 00000000 00000000

компьютер1 производит побитовое сложение IP адреса и маски подсети для компьютера2.

11000000 10101000 00000000 00000010
11111111 11111111 11111111 00000000

11000000 10101000 00000000 00000000

Как вы видите — результат побитового сложения одинаков для обоих хостов, что означает что оба хоста находятся в пределах одной сети.

Маршрутизация

В примере выше, был рассмотрен случай, когда компьютеры находятся в пределах одной сети. Это означает, что эти компьютеры могут передавать информацию непосредственно между собой, как говорится из рук в руки. Если-же компьютеры находятся в различных сетях, для передачи данных между ними потребуется маршрутизатор.

Самым распространенным примером маршрутизатора есть WiFi роутер (роутер он потому, что маршрут по английски route, соответственно маршрутизатор стали называть роутерами).

Роутером называется сетевое устройство, котрое имеет два, или более сетевых интерфейса (которые имеют уникальные IP адерса). Устроен роутер так, что при поступлении на один из сетевых интерфесов IP пакета, производится его анализ и принимается решение куда передавать IP пакет дальше. В случае с домашним роутером, вариантов не много — он просто передает пакеты дальше на маршрутизатор провайдера, где IP пакет опять анализируется и так далее до тех пор, пока ваш IP пакет не достигнет цели.

Итак, компьютер определил, что для отправки пакета требуется передать данные в другую сеть. Для этого, в настройках IP параметров каждого компьютера предусмотрен дополнительный параметр — IP адрес шлюза по умолчанию. Шлюз по умолчанию, это и есть роутер, который будет передавать IP пакеты сетевым устройствам, которые находятся за пределами вашей локальной сети.

Классы IP адресов

Исторически сложилось, что провайдерам выделялись IP адреса классами, которых всего три:

Адреса сетейМаска подсетиКоличество сетейКоличество хостов
Класс A1-126.0.0.0255.0.0.012616 777 214
Класс B128-191.0.0.0255.255.0.016 38465 534
Класс C192-223.0.0.0255.255.255.02 097 152254

Резервированные диапазоны IP адресов

Вы наверное заметили, что диапазон адресов 127.x.x.x не вошел ни в один из классов. Данный диапазон зарезервирован под использование в интерфейсе обратной петли (loopback). Адреса из данного диапазона всегда укаызвают на локальный компьютер.

Диапазон адресов 169.254.0.x также зарезервирован под нужды APIPA.

Диапазоны частных IP адресов

До недавнего времени проблема с нехваткой IP адресов была не так актуальна как сейчас. Сейчас-же для того, чтоб каждое сетевое устройство организации подключить к интернет большое расторчительство, поэтому домашние сети и организации любого размера предпочитают использовать NAT. Для этой цели IANA решила зарезервировать по одной сети из каждого класса:

  • 10.0.0.1 – 10.255.255.254 из класса A
  • 172.16.0.1 – 172.31.255.254 из класса B
  • 192.168.0.1 – 192.168.255.254 из класса C

Вместо того, чтоб присваивать каждому устройству, подключающемуся к итернет реальный айпи адрес, провайдер выделяет только один рельный айпи адрес для маршрутизатора, через который компьютеры локальной сети выходят в интернет, а компьютерам локальной сети присваиваются айпи адреса из диапазонов, который наиболее подходят под нужды конкретной локальной сети. Затем, маршрутизатор подменяет адрес локальной сети у пакетов, отправляемых в интернет и возвращает адрес локальной сети пакетам, возвращающимся из интернет.

Обратите внимание: В большинстве случаев внешний IP адрес вашего маршрутизатора назначается DHCP сервером провайдера динамически, поэтому он со временем может изменяться. Для того, чтоб IP адрес не изменялся — нужно у провайдера заказать услугу статический айпи адрес.

Преобразование имен в IP адреса и обратно

Согласитесь, что запомнить имя сервера FileServer1 намного легче, нежели его IP адрес 89.53.234.2. В малых ссетях, где не установлен сервер DNS, если вы попытаетесь открыть FileServer1, ваш компьютер отправит широковещательный запрос, в котором запрашивается информация о FileServer1. Если FileServer1 получит этот широковещательный запрос, он в ответ вернет свой IP адрес. Даный метод разрешения имен компьютера в сети называется LLMNR (Link-lock Multicast Name Resolution), и очень удобен в масштабах домашней сети. Для больших сетей он имеет проблемы сс масштабируемостью: если в вашей сети огромное количество компьютеров — имеются две проблемы при использовании LLMNR: рассылка широковещательных запросов в таких условиях производит большую нагрузку на сеть, ну и в связи с этим, большинство роутеров не маршрутизируют широквещательные запросы.

DNS (Служба доменных имен)

Наиболее правильным методом решения проблемы с масштабируемостью — это использовать службу DNS (Domain Name System). Когда вы попытаетесь подключиться к FileServer1, ваш компьютер обратится к серверу DNS, с вопросом кто такой FileServer1. DNS сервер вернет в отвер IP адрес FileServer1, который в дальнейшем ваш компьютер может использовать для подключения к FileServer1. Для более детального ознакомления со службой DNS чиайте статью DNS: Что это такое.

Как работают IP-адреса

К аждое устройство, подключенное к сети — компьютер, планшет, камера и т. д. — нуждается в уникальном идентификаторе, чтобы другие устройства знали, как к нему обратиться. В мире TCP/IP сетей этим идентификатором является IP-адрес.

Вы, вероятно, сталкивались с IP-адресами — числовыми последовательностями, которые выглядят примерно как 192.168.0.1. Большую часть времени пользователям не приходится иметь дело с ними напрямую, поскольку устройства и сети работают с ними кулисами. Когда нам приходится иметь дело с ними, мы часто просто следуем инструкциям о том, какие цифры ставить и где. Но если Вы когда-нибудь хотели немного углубиться в смысл этих цифр, эта статья для Вас.

Понимание того, как работают IP-адреса, важно, если Вы когда-нибудь захотите выяснить, почему Ваша сеть работает неправильно или почему конкретное устройство не подключается так, как Вы этого ожидаете. И, если Вам когда-нибудь понадобится настроить что-то более продвинутое — например, хостинг игрового сервера или медиа-сервера, к которому могут подключиться друзья из Интернета, Вам нужно будет кое-что узнать об IP-адресации. Плюс, это довольно увлекательно.

Примечание: в этой статье мы расскажем об основах IP-адресации. Мы не собираемся рассказывать о более продвинутых или профессиональных вещах, таких как классы IP, бесклассовая маршрутизация и пользовательские подсети, но мы укажем некоторые источники для дальнейшего чтения.

Что такое IP-адрес

IP-адрес уникально идентифицирует устройство в сети. Вы видели эти адреса раньше, они выглядят как 192.168.1.34.

IP-адрес — это набор из четырех чисел. Каждое число может находиться в диапазоне от 0 до 255. Таким образом, полный диапазон IP-адресов варьируется от 0.0.0.0 до 255.255.255.255.

Причина, по которой каждое число может достигать только 255, состоит в том, что каждое из них на самом деле представляет собой восьмизначное двоичное число (иногда называемое октетом). В октете нулевое число будет 00000000, а 255 будет 11111111, максимальное число, которое может достигнуть октет. Тот IP-адрес, который мы упоминали ранее (192.168.1.34) в двоичном виде, будет выглядеть следующим образом: 11000000.10101000.00000001.00100010.

Компьютеры работают с двоичным форматом, но нам, людям, гораздо проще работать с десятичным форматом. Однако знание того, что адреса на самом деле являются двоичными числами, поможет нам понять, почему некоторые вещи, связанные с IP-адресами, работают так, а не иначе.

Две части IP-адреса

IP-адрес устройства фактически состоит из двух отдельных частей:

  • Идентификатор сети: Идентификатор сети является частью IP-адреса, начинающегося слева, который идентифицирует конкретную сеть, в которой находится устройство. В типичной домашней сети, где устройство имеет IP-адрес 192.168.1.34, часть адреса 192.168.1 будет идентификатором сети. Пропущенную заключительную часть принято заполнять нулем, поэтому можно сказать, что сетевой идентификатор устройства — 192.168.1.0.
  • Идентификатор хоста: Идентификатор хоста является частью IP-адреса, не занятого идентификатором сети. Он идентифицирует конкретное устройство (в мире TCP/IP мы называем устройства «хостами») в этой сети. Продолжая наш пример IP-адреса 192.168.1.34, идентификатор хоста будет 34 — уникальный идентификатор хоста в сети 192.168.1.0.

В Вашей домашней сети Вы можете увидеть несколько устройств с IP-адресами, такими как 192.168.1.1, 192.168.1.2, 192.168.1.30 и 192.168.1.34. Все это уникальные устройства (с идентификаторами хостов 1, 2, 30 и 34 в данном случае) в одной сети (с идентификатором сети 192.168.1.0).

Чтобы представить все это немного лучше, давайте обратимся к аналогии. Это очень похоже на то, как работают уличные адреса в городе. Возьмите адрес, например, ул. Гагарина 108. Название улицы похоже на идентификатор сети, а номер дома — на идентификатор хоста. В пределах города никакие две улицы не будут названы одинаково, точно так же, как никакие два идентификатора сети в одной и той же сети не будут названы одинаково. На определенной улице каждый номер дома уникален, точно так же как все идентификаторы хоста в пределах определенного идентификатора сети уникальны.

Маска подсети

Итак, как Ваше устройство определяет, какая часть IP-адреса является идентификатором сети, а какая — идентификатором хоста? Для этого они используют второй номер, который Вы всегда увидите в связи с IP-адресом. Этот номер называется маской подсети.

В большинстве простых сетей (например, в домах или на небольших предприятиях) Вы увидите маски подсетей, такие как 255.255.255.0, где все четыре числа — либо 255, либо 0. Положение изменений от 255 до 0 указывает на разделение между идентификатор сети и хоста. 255 «маскируют» идентификатор сети.

Примечание: Базовые маски подсетей, которые мы здесь описываем, известны как маски подсетей по умолчанию. Люди часто используют пользовательские маски подсетей (где позиция разрыва между нулями и единицами смещается в пределах октета) для создания нескольких подсетей в одной сети. Это немного выходит за рамки этой статьи, но если вам интересно, у Cisco есть довольно хорошее руководство по подсетям.

В дополнение к самому IP-адресу и соответствующей маске подсети Вы также увидите в списке адрес шлюза по умолчанию и информацию об IP-адресации. В зависимости от платформы, которую Вы используете, этот адрес может называться как-то иначе. Иногда его называют «маршрутизатор», «адрес маршрутизатора», «маршрут по умолчанию» или просто «шлюз». Это одно и то же. Это IP-адрес по умолчанию, на который устройство отправляет сетевые данные, когда эти данные предназначены для передачи в другую сеть (с другим идентификатором сети), чем та, на которой включено устройство.

Простейший пример этого можно найти в типичной домашней сети.

Если у Вас есть домашняя сеть с несколькими устройствами, скорее всего, у Вас есть маршрутизатор, который подключен к Интернету через модем. Этот маршрутизатор может быть отдельным устройством или частью комбинированного устройства модем/маршрутизатор, предоставленного Вашим интернет-провайдером. Маршрутизатор находится между компьютерами и устройствами в Вашей сети и общедоступными устройствами в Интернете, передавая (или маршрутизируя) трафик туда и обратно.

Допустим, Вы запустили свой браузер и отправились на guidepc.ru. Ваш компьютер отправляет запрос на IP-адрес нашего сайта. Поскольку наши серверы находятся в Интернете, а не в Вашей домашней сети, этот трафик отправляется с Вашего ПК на Ваш маршрутизатор (шлюз), и Ваш маршрутизатор направляет запрос на наш сервер. Сервер отправляет нужную информацию обратно на Ваш маршрутизатор, который затем направляет информацию обратно на устройство, которое ее запросило, и Вы видите наш сайт, открывшийся в Вашем браузере.

Как правило, маршрутизаторы по умолчанию настроены на использование своего частного IP-адреса (своего адреса в локальной сети) в качестве первого идентификатора хоста. Так, например, в домашней сети, которая использует 192.168.1.0 для идентификатора сети, адрес маршрутизатора обычно будет 192.168.1.1. Конечно, как и большинство вещей, Вы можете настроить его по-другому, если хотите.

DNS-серверы

Есть еще одна информация, которую Вы увидите назначенной вместе с IP-адресом устройства, маской подсети и адресом шлюза по умолчанию: адреса одного или двух серверов DNS по умолчанию. Мы, люди, работаем намного лучше с именами, чем с числовыми адресами. Ввести guidepc.ru в адресную строку Вашего браузера гораздо проще, чем запомнить и ввести IP-адрес нашего сайта.

DNS работает как телефонная книга, ищет удобочитаемые вещи, такие как имена веб-сайтов, и конвертирует их в IP-адреса. DNS делает это, сохраняя всю эту информацию в системе связанных DNS-серверов через Интернет. Вашим устройствам необходимо знать адреса DNS-серверов, на которые следует отправлять свои запросы.

В типичной небольшой или домашней сети IP-адреса DNS-сервера часто совпадают с адресами шлюза по умолчанию. Устройства отправляют свои DNS-запросы Вашему маршрутизатору, который затем перенаправляет запросы на DNS-серверы, на которые маршрутизатор настроен для использования. По умолчанию это обычно те DNS-серверы, которые предоставляет Ваш интернет-провайдер, но Вы можете изменить их на другие DNS-серверы, если хотите. Иногда Вы можете добиться большего успеха, используя DNS-серверы, предоставляемые третьими сторонами, такими как Google или OpenDNS.

В чем разница между IPv4 и IPv6

Вы также, возможно, заметили, просматривая настройки другой типа IP-адреса, называемого IPv6-адресом. Типы IP-адресов, о которых мы говорили до сих пор, — это адреса, используемые в IP версии 4 (IPv4) — протоколе, разработанном в конце 70-х годов. Они используют 32 двоичных разряда, о которых мы говорили (в четырех октетах), чтобы обеспечить в общей сложности 4,29 миллиарда возможных уникальных адресов. Хотя это звучит как много, все общедоступные адреса давно были зарезервированы для бизнеса. Многие из них не используются, но они зарезервированы и недоступны для общего пользования.

В середине 90-х, обеспокоенная потенциальной нехваткой IP-адресов, Инженерная рабочая группа по Интернету (IETF) разработала IPv6. IPv6 использует 128-битный адрес вместо 32-битного адреса IPv4, поэтому общее количество уникальных адресов измеряется в миллиардах — это число достаточно велико, и все адреса вряд ли когда-нибудь закончатся.

В отличие от десятичной записи, используемой в IPv4, адреса IPv6 выражаются в виде восьми числовых групп, разделенных двоеточиями. Каждая группа имеет четыре шестнадцатеричные цифры. Типичный адрес IPv6 может выглядеть примерно так:

Дело в том, что нехватка адресов IPv4, которая вызвала опасения, в конечном итоге была в значительной степени уменьшена за счет более широкого использования частных IP-адресов за маршрутизаторами. Все больше и больше людей создают свои собственные частные сети, используя те частные IP-адреса, которые не предоставляются публично.

Таким образом, даже несмотря на то, что переход на IPv6 по-прежнему будет происходить, он никогда не происходил так быстро, как прогнозировалось — по крайней мере, пока. Если Вы заинтересованы в получении дополнительной информации, ознакомьтесь с этой историей и временной шкалой IPv6.

Как устройство получает свой IP-адрес

Теперь, когда Вы знаете основы работы IP-адресов, давайте сначала поговорим о том, как устройства получают свои IP-адреса. На самом деле существует два типа назначений IP: динамический и статический.

Динамический IP-адрес назначается автоматически при подключении устройства к сети. Для этого в подавляющем большинстве современных сетей (включая Вашу домашнюю сеть) используется протокол динамической конфигурации хоста (DHCP). DHCP встроен в Ваш роутер. Когда устройство подключается к сети, оно отправляет широковещательное сообщение с запросом IP-адреса. DHCP перехватывает это сообщение, а затем назначает IP-адрес этому устройству из пула доступных IP-адресов.

Для этой цели существуют определенные диапазоны частных IP-адресов. То, что используется, зависит от того, кто сделал Ваш роутер, или как Вы настроили его самостоятельно.

Дело в том, что динамические адреса иногда меняются. DHCP-серверы сдают в аренду IP-адреса устройствам, и когда срок аренды истекает, устройства должны возобновлять аренду. Иногда устройства получают другой IP-адрес из пула адресов, которые может назначить сервер.

В большинстве случаев это не имеет большого значения, и все будет «просто работать». Однако иногда Вам может потребоваться присвоить устройству IP-адрес, который не изменяется. Например, возможно, у Вас есть устройство, к которому Вам нужно получить доступ вручную, и Вам легче запомнить IP-адрес, чем имя. Или, может быть, у Вас есть определенные приложения, которые могут подключаться только к сетевым устройствам, используя их IP-адрес.

В этих случаях Вы можете назначить статический IP-адрес этим устройствам. Есть несколько способов сделать это. Вы можете вручную настроить устройство со статическим IP-адресом, хотя иногда это может быть затруднительным. Другое, более элегантное решение — настроить маршрутизатор для назначения статических IP-адресов определенным устройствам во время динамического назначением DHCP-сервером. Таким образом, IP-адрес никогда не меняется, но Вы не прерываете процесс DHCP, который обеспечивает бесперебойную работу.

Читать еще:  Адрес блока состоит из
Ссылка на основную публикацию
Adblock
detector