Foreversoft.ru

IT Справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Линейн в excel

Глава 22. Функция массива ЛИНЕЙН

Это глава из книги: Майкл Гирвин. Ctrl+Shift+Enter. Освоение формул массива в Excel.

Функция ЛИНЕЙН рассчитывает статистику для ряда с применением метода наименьших квадратов, чтобы вычислить прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные и затем возвращает массив, который описывает полученную прямую. Функция ЛИНЕЙН может также возвращать дополнительную регрессионную статистику (подробнее см. справку MS Excel).

Рис. 22.1. Четыре аргумента функции ЛИНЕЙН

Скачать заметку в формате Word или pdf, примеры в формате Excel

Линейная регрессия

На рис. 22.2 показан набор данных (он уже анализировался в главе 9, когда мы обсуждали функции НАКЛОН, ОТРЕЗОК, ПРЕДСКАЗ и ТЕНДЕНЦИЯ). Поскольку ЛИНЕЙН является функцией массива и вы хотите, чтобы она вернула два значения, выполните следующие действия:

  1. Выделите диапазон D2:Е2. Функция ЛИНЕЙН возвращает массив из двух значений, расположенных по горизонтали, но не по вертикали.
  2. Введите известные значения y. Это – баллы, которые студенты заработали на последнем тестировании.
  3. Введите известные значения х. Это количество часов, которые студенты потратили на подготовку к тестам.
  4. Опустите аргумент [конст].
  5. Опустите аргумент [статистика].
  6. Введите формулу с помощью Ctrl+Shift+Enter.

Рис. 22.2. Функция ЛИНЕЙН возвращает наклон и отрезок, если массив расположен в горизонтальном диапазоне

Рис. 22.3. Функция массива ЛИНЕЙН заменяет две отдельные функции – НАКЛОН и ОТРЕЗОК

Если вам всё же нужно вывести результаты функции ЛИНЕЙН в вертикальный массив, воспользуйтесь ухищрением (рис. 22.4).

Рис. 22.4. Формулы для вывода результатов в вертикальный массив

Если вы хотите отобразить не только наклон и отрезок, но и дополнительные статистики, выделите диапазон на один столбец больше, чем столбцов с переменными х, и высотой 5 строк. Как показано на рис. 22.5, поскольку у вас лишь одна переменная х, выделите диапазон Е2:F6 (2 столбца по 5 строк). Третьему и четвертому аргументам присвойте значения ИСТИНА: вы хотите, чтобы b считалось обычным образом, и хотите вывести дополнительные статистики. После ввода формулы нажатием Ctrl+Shift+Enter, результат должен соответствовать рис. 22.6 (подробнее о десяти статистиках см. Простая линейная регрессия).

Рис. 22.5. Когда требуется дополнительная статистика для одной переменной, выделите диапазон 2*5; функция ЛИНЕЙН вернет 10 значений; чтобы увеличить изображение кликните на нем правой кнопкой мыши и выберите Открыть картинку в новой вкладке

Рис. 22.6. Функция ЛИНЕЙН возвращает 10 статистик

В главе 8 было показано, как с помощью формулы преобразовать таблицу в столбец. На рис. 22.7 приведена формула, позволяющая представить результаты работы функции ЛИНЕЙН (которые она возвращает в диапазон 2*5) в вертикальном столбце.

Следующие элементы являются аргументами функции ИНДЕКС:

  • аргумент массив: функция ЛИНЕЙН($B$2:$B$12;$A$2:$A$12;ИСТИНА;ИСТИНА) возвращает диапазон из пяти строк и двух столбцов.
  • аргумент номер_строки: ОСТАТ(ЧСТРОК(E$1:E1)-1;5)+1 возвращает следующие значения 1,2,3,4,5,1,2,3,4,5 при копировании формулы вдоль столбца от Е1 до Е10.
  • аргумент номер_столбца: ЦЕЛОЕ((ЧСТРОК(E$1:E1)-1)/5)+1 возвращает 1,1,1,1,1,2,2,2,2,2 при копировании формулы вдоль столбца от Е1 до Е10.

Рис. 22.7. Преобразование диапазона вывода формулы ЛИНЕЙН из 2*5 в вертикальный

Формула в Е1 не требует ввода с помощью Ctrl+Shift+Enter.

Множественная регрессия

В случае множественной регресии, когда значения y зависят от двух переменных х1 и х2, функция ЛИНЕЙН возвращает 12 статистик (подробнее см. Введение в множественную регрессию и Построение модели множественной регрессии). На рис. 22.8 используются следующие обозначения:

  • y = зависимая переменная
  • x1 = независимая переменная 1 = баллы за домашнее задание
  • x2 = независимая переменная 2 = часов изучал последний столбец тест = гр.

Чтобы выполнить множественную регрессию:

  • Выделите диапазон В3:D7 (число столобцов = число переменных +1; число строк всегда равно 5).
  • Наберите формулу <=ЛИНЕЙН(D13:D23;B13:C23;ИСТИНА;ИСТИНА)>. Для аргумента известные_значения_х, выделите оба столбца значений x из диапазона В13:С23.
  • Введите функцию с помощью клавиш Ctrl+Shift+Enter.
  • Обратите внимание, что несмотря на то, что значения х1 указаны в диапазоне В13:С23 до значений х2, наклон сначала указан для х2.

Рис. 22.8. Для двух переменных x1 и х2 функция ЛИНЕЙН выполняет множественную регрессию

Если вас раздражают знаяения ошибки #Н/Д дополните вашу формулу функцией ЕСЛИОШИБКА (рис. 22.9).

Рис. 22.9. Вы можете избавиться от ошибок #Н/Д «обернув» ЛИНЕЙН функцией ЕСЛИОШИБКА

Пример с тремя переменными не должен вызвать затруднений (рис. 22.10).

Рис. 22.10. Множественная регрессия для трех независимых переменных

2 комментария для “Глава 22. Функция массива ЛИНЕЙН”

Добрый день!
У меня следующая ситуация: значения двух независимых переменных x1 и x2 содержаться на разных листах. Перенести их на один лист не получается, потому что наборов данных несколько сотен и делать для каждого набора отдельную вкладку — не вариант. Можно ли как-то обойти требование что x1 и x2 должны содержаться в едином диапазоне?

ЛИНЕЙН (функция ЛИНЕЙН)

В этой статье описаны синтаксис формулы и использование функции ЛИНЕЙН в Microsoft Excel. Ссылки на дополнительные сведения о диаграммах и выполнении регрессионного анализа в разделе » см .

Описание

Функция ЛИНЕЙН рассчитывает статистику для ряда с применением метода наименьших квадратов, чтобы вычислить прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные и затем возвращает массив, который описывает полученную прямую. Функцию ЛИНЕЙН также можно объединять с другими функциями для вычисления других видов моделей, являющихся линейными по неизвестным параметрам, включая полиномиальные, логарифмические, экспоненциальные и степенные ряды. Поскольку возвращается массив значений, функция должна задаваться в виде формулы массива. Инструкции приведены в данной статье после примеров.

Уравнение для прямой линии имеет следующий вид:

y = m1x1 + m2x2 +. + b

если существует несколько диапазонов значений x, где зависимые значения y — функции независимых значений x. Значения m — коэффициенты, соответствующие каждому значению x, а b — постоянная. Обратите внимание, что y, x и m могут быть векторами. Функция ЛИНЕЙН возвращает массив . Функция ЛИНЕЙН может также возвращать дополнительную регрессионную статистику.

Синтаксис

ЛИНЕЙН(известные_значения_y; [известные_значения_x]; [конст]; [статистика])

Аргументы функции ЛИНЕЙН описаны ниже.

Синтаксис

Известные_значения_y. Обязательный аргумент. Множество значений y, которые уже известны для соотношения y = mx + b.

Если массив известные_значения_y имеет один столбец, то каждый столбец массива известные_значения_x интерпретируется как отдельная переменная.

Если массив известные_значения_y имеет одну строку, то каждая строка массива известные_значения_x интерпретируется как отдельная переменная.

Известные_значения_x. Необязательный аргумент. Множество значений x, которые уже известны для соотношения y = mx + b.

Массив известные_значения_x может содержать одно или несколько множеств переменных. Если используется только одна переменная, то массивы известные_значения_y и известные_значения_x могут иметь любую форму — при условии, что они имеют одинаковую размерность. Если используется более одной переменной, то известные_значения_y должны быть вектором (т. е. интервалом высотой в одну строку или шириной в один столбец).

Если массив известные_значения_x опущен, то предполагается, что это массив <1;2;3;. >, имеющий такой же размер, что и массив известные_значения_y.

Конст. Необязательный аргумент. Логическое значение, которое указывает, требуется ли, чтобы константа b была равна 0.

Если аргумент конст имеет значение ИСТИНА или опущен, то константа b вычисляется обычным образом.

Если аргумент конст имеет значение ЛОЖЬ, то значение b полагается равным 0 и значения m подбираются таким образом, чтобы выполнялось соотношение y = mx.

Статистика. Необязательный аргумент. Логическое значение, которое указывает, требуется ли возвратить дополнительную регрессионную статистику.

Если значение аргумента Статистика истинно, функция ЛИНЕЙН возвращает дополнительную статистику по регрессии; в результате возвращаемый массив имеет значение .

Если аргумент статистика имеет значение ЛОЖЬ или опущен, функция ЛИНЕЙН возвращает только коэффициенты m и постоянную b.

Дополнительная регрессионная статистика.

Стандартные значения ошибок для коэффициентов m1,m2. mn.

Стандартное значение ошибки для постоянной b (seb = #Н/Д, если аргумент конст имеет значение ЛОЖЬ).

Коэффициент определения. Сравнивает предполагаемые и фактические значения y и диапазоны значений от 0 до 1. Если это 1, то в примере есть идеальная корреляция — разница между предполагаемыми значениями y и фактическим значением y отсутствует. С другой стороны, если коэффициент определения равен 0, уравнение регрессии не может быть полезным для предсказания значения y. Сведения о том, как вычисляется 2 , приведены в разделе «Примечания» ниже.

Стандартная ошибка для оценки y.

F-статистика или F-наблюдаемое значение. F-статистика используется для определения того, является ли случайной наблюдаемая взаимосвязь между зависимой и независимой переменными.

Степени свободы. Степени свободы используются для нахождения F-критических значений в статистической таблице. Для определения уровня надежности модели необходимо сравнить значения в таблице с F-статистикой, возвращаемой функцией ЛИНЕЙН. Дополнительные сведения о вычислении величины df см. ниже в разделе «Замечания». Далее в примере 4 показано использование величин F и df.

Регрессионная сумма квадратов.

Остаточная сумма квадратов. Дополнительные сведения о расчете величин ssreg и ssresid см. в подразделе «Замечания» в конце данного раздела.

На приведенном ниже рисунке показано, в каком порядке возвращается дополнительная регрессионная статистика.

Замечания

Любую прямую можно описать ее наклоном и пересечением с осью y:

Наклон (м):
Чтобы найти наклон линии, часто записывается как m, выведите две точки в линии (x1, y1) и (x2, Y2); наклон равен (Y2-Y1)/(x2-x1).

Пересечение с осью Y (b
): Пересечением y строки, часто написанным как b, является значение y в точке, где линия пересекает ось y.

Уравнение прямой имеет вид y = mx + b. Если известны значения m и b, то можно вычислить любую точку на прямой, подставляя значения y или x в уравнение. Можно также воспользоваться функцией ТЕНДЕНЦИЯ.

Если имеется только одна независимая переменная x, можно получить наклон и y-пересечение непосредственно, воспользовавшись следующими формулами:

Наклон:
= INDEX (ЛИНЕЙН (known_y, known_x), 1)

Пересечение с осью
Y: = INDEX (ЛИНЕЙН (known_y, known_x); 2)

Точность аппроксимации с помощью прямой, вычисленной функцией ЛИНЕЙН, зависит от степени разброса данных. Чем ближе данные к прямой, тем более точной является модель ЛИНЕЙН. Функция ЛИНЕЙН использует для определения наилучшей аппроксимации данных метод наименьших квадратов. Когда имеется только одна независимая переменная x, значения m и b вычисляются по следующим формулам:

где x и y — выборочные средние значения, например x = СРЗНАЧ(известные_значения_x), а y = СРЗНАЧ( известные_значения_y ).

Функции «линейный» и «кривая» ЛИНЕЙН и ЛИНЕЙН могут вычислять подходящую прямую линейную или экспоненциальную кривую, подходящую для данных. Тем не менее, вам нужно решить, какой из двух результатов лучше подходит для ваших данных. Можно вычислить тенденции ( known_y, known_x ) для прямой линии или роста ( known_y , known_x ) для экспоненциальной кривой. Эти функции без аргумента new_x возвращают массив значений y, прогнозируемых вдоль данной линии или кривой на реальных точках данных. Затем вы можете сравнить прогнозируемые значения с фактическими значениями. Вы можете попытаться создать диаграмму для визуального сравнения.

Проводя регрессионный анализ, Microsoft Excel вычисляет для каждой точки квадрат разности между прогнозируемым значением y и фактическим значением y. Сумма этих квадратов разностей называется остаточной суммой квадратов (ssres > конст = ИСТИНА или значение этого аргумента не указано, общая сумма квадратов будет равна сумме квадратов разностей действительных значений y и средних значений y. При конст = ЛОЖЬ общая сумма квадратов будет равна сумме квадратов действительных значений y (без вычитания среднего значения y из частного значения y). После этого регрессионную сумму квадратов можно вычислить следующим образом: ssreg = sstotal — ssres >2 ), который является индикатором того, насколько точно в результате регрессионного анализа объясняется связь между переменными. Значение r 2 равно ссрег/сстотал.

В некоторых случаях один или несколько столбцов X (допускает наличие столбцов Y и X) могут не иметь дополнительного прогнозируемого значения в других столбцах X. Другими словами, удаление одного или нескольких столбцов X может привести к прогнозируемым значениям Y, которые являются одинаково точными. В таком случае эти избыточные столбцы X должны быть опущены в модели регрессии. Это явление называется «коллинеарностй», так как любой избыточный столбец X можно выразить как сумму кратных столбцов X, не являющихся избыточными. Функция ЛИНЕЙН проверяет наличие коллинеарности и удаляет избыточные столбцы X из модели регрессии при их идентификации. Удаленные столбцы X могут быть распознаны в выходных данных ЛИНЕЙН , так как они имеют нулевые коэффициенты в дополнение к значениям 0 SE. Если один или несколько столбцов удалены как избыточные, значение DF будет затронуто, так как DF зависит от количества столбцов X, которые фактически используются для целей прогнозирования. Подробнее о вычислении DF можно найти в разделе Пример 4. Если значение DF изменилось из-за того, что удаляются столбцы с избыточными X, также повлияют значения Сэй и F. Коллинеарность на практике должен быть сравнительно редкой. Тем не менее, если некоторые из столбцов X содержат только значения 0 и 1, в том числе индикаторов того, является ли тема в эксперименте или не входит в состав определенной группы. Если аргумент » Конст » имеет значение истина или опущен, функция ЛИНЕЙН фактически вставляет дополнительный столбец X для всех значений 1, чтобы смоделировать функцию «конст». Если у вас есть столбец с 1 для каждой темы, если это не так, а у тебя есть столбец с 1 по каждой тематике или 0 в противном случае, то этот последний столбец является избыточным, так как записи в нем можно получить, так как они могут быть получены от вычитания записи в столбце «индикатор со значением» в дополнительном столбце, который содержит все значения 1, добавленные функцией ЛИНЕЙН .

Вычисление значения df для случаев, когда столбцы X удаляются из модели вследствие коллинеарности происходит следующим образом: если существует k столбцов известных_значений_x и значение конст = ИСТИНА или не указано, то df = n – k – 1. Если конст = ЛОЖЬ, то df = n — k. В обоих случаях удаление столбцов X вследствие коллинеарности увеличивает значение df на 1.

При вводе константы массива (например, в качестве аргумента известные_значения_x) следует использовать точку с запятой для разделения значений в одной строке и двоеточие для разделения строк. Знаки-разделители могут быть другими в зависимости от региональных параметров.

Следует отметить, что значения y, предсказанные с помощью уравнения регрессии, возможно, не будут правильными, если они располагаются вне интервала значений y, которые использовались для определения уравнения.

Основной алгоритм, используемый в функции ЛИНЕЙН, отличается от основного алгоритма функций НАКЛОН и ОТРЕЗОК. Разница между алгоритмами может привести к различным результатам при неопределенных и коллинеарных данных. Например, если точки данных аргумента известные_значения_y равны 0, а точки данных аргумента известные_значения_x равны 1, то:

Функция ЛИНЕЙН возвращает значение, равное 0. Алгоритм функции ЛИНЕЙН используется для возвращения подходящих значений для коллинеарных данных, и в данном случае может быть найден по меньшей мере один ответ.

Наклон и конст возвращают #DIV/0! Если позиция, которую вы указали, находится перед первым или после последнего элемента в поле, формула возвращает ошибку #ССЫЛКА!. Алгоритмы наклона и перехвата предназначены для поиска только одного ответа, и в этом случае может быть несколько ответов.

Помимо вычисления статистики для других типов регрессии с помощью функции ЛГРФПРИБЛ, для вычисления диапазонов некоторых других типов регрессий можно использовать функцию ЛИНЕЙН, вводя функции переменных x и y как ряды переменных х и у для ЛИНЕЙН. Например, следующая формула:

работает при наличии одного столбца значений Y и одного столбца значений Х для вычисления аппроксимации куба (многочлен 3-й степени) следующей формы:

y = m1*x + m2*x^2 + m3*x^3 + b

Формула может быть изменена для расчетов других типов регрессии, но в отдельных случаях требуется корректировка выходных значений и других статистических данных.

Значение F-теста, возвращаемое функцией ЛИНЕЙН, отличается от значения, возвращаемого функцией ФТЕСТ. Функция ЛИНЕЙН возвращает F-статистику, в то время как ФТЕСТ возвращает вероятность.

Примеры

Пример 1. Наклон и Y-пересечение

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Примеры как пользоваться функцией ЛИНЕЙН в Excel

Задача отыскания функциональной зависимости очень важна, поэтому для ее решения в MS Excel введен набор функций, основанных на методе наименьших квадратов. В качестве результата выдаются не только коэффициенты функции, приближающей данные, но и статистические характеристики полученных результатов.

Смысл выходной статистической информации функции ЛИНЕЙН

Функция ЛИНЕЙН рассчитывает статистику для ряда с применением метода наименьших квадратов, вычисляя прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные. Функция возвращает массив, который описывает полученную прямую.

Общий синтаксис вызова функции ЛИНЕЙН имеет следующий вид:

Для работы с функцией необходимо заполнить как минимум 1 обязательный и при необходимости 3 необязательных аргумента:

  1. Известные_значения_y − это множество значений y , которые уже известны для соотношения y=mx+b.
  2. Известные_значения_x − это множество известных значений x . Если этот аргумент опущен, то предполагается, что это массив <1; 2; 3; . >такого же размера, как и известные_значения_y.
  3. Конст − это логическое значение, которое указывает, требуется ли, чтобы константа b была равна 0. Если в функции ЛИНЕЙН аргумент константа имеет значение ЛОЖЬ, то b полагается равным 0 и значения m подбираются так, чтобы выполнялось соотношение y = mx.
  4. Статистика − это логическое значение, которое указывает, требуется ли выдать дополнительную статистику по регрессии.



Примеры использования функции ЛИНЕЙН в Excel

Для решения первой задачи – о соотношении часов подготовки студентов к тесту и результатов теста, как х и у соответственно, – необходимо применить следующий порядок действий (в связи с тем, что ЛИНЕЙН является функцией, которая возвращает массив):

  1. Выделите диапазон D2:Е2, так как функция ЛИНЕЙН возвращает массив из двух значений, расположенных по горизонтали, но не по вертикали.
  2. Введите известные значения y – баллы, которые студенты заработали на последнем тестировании (диапазон ячеек В2:В12).
  3. Затем введите известные значения х – количество часов, которые студенты потратили на подготовку к тестам (диапазон А2:А12).
  4. Опустите аргумент [конст].
  5. Опустите аргумент [статистика].
  6. Введите формулу с помощью Ctrl+Shift+Enter.

Результатом применения функции становится:

Теперь, на примере решения второй задачи, разберем необходимость в отображении не только наклона и отрезка, но и дополнительной статистики. Для примера, на диапазоне А1:В6 выстроим таблицу с соотношением у и х соответствующих сумме заработка студентом денежных средств за период в 5 месяцев. Так как мы имеем лишь одну переменную х, то необходимо выделить диапазон состоящий из двух столбцов и пяти строк. Важно отметить, что в том случае, если переменных х будет больше, то количество столбцов может изменяться соответственно их количеству, однако строк будет всегда 5.

Применительно к решаемой нами задаче, выделим диапазон Е2:F6, затем введем формулу аналогично предыдущей задаче, но в данном случае третьему и четвертому аргументу присвоим значение 1 соответствующее ИСТИНЕ. Для вывода параметров статистики функции ЛИНЕЙН необходимо нажат Ctrl+Shift+Enter, результат должен соответствовать следующему рисунку, на котором представлено обозначение дополнительных статистик:

Вернемся к примеру № 1, касающемуся зависимости между часами подготовки студентов к тесту и баллов за тест. Добавим к условию задачи данные о баллах за домашнее задание — представляющие дополнительную переменную х, что свидетельствует о необходимости применения множественной регрессии.

В случае множественной регрессии, когда значения « y » зависят от двух переменных « х », функция ЛИНЕЙН возвращает 12 статистик. На рисунке с модифицированной таблицей от 1 примера, представленном ниже используются следующие обозначения:

  • y = зависимая переменная;
  • x1 = независимая переменная 1 = баллы за домашнее задание;
  • x2 = независимая переменная 2 = часы подготовки к тесту.

Чтобы выполнить множественную регрессию:

  1. Выделите диапазон В3:D7 (число столбцов = число переменных +1; число строк всегда равно 5).
  2. Наберите формулу =ЛИНЕЙН(D14:D24;B14:C24;1;1). Для аргумента известные_значения_х, выделите оба столбца значений x из диапазона В14:С24.
  3. Введите функцию с помощью клавиш Ctrl+Shift+Enter.
  4. Обратите внимание, что несмотря на то, что значения х1 указаны в диапазоне В14:С24 до значений х2, наклон сначала указан для х2.

Диапазон D5:D7 содержит ошибку #Н/Д – значащую, что формула не может обнаружить значения для данных ячеек. Визуально наличие ошибки отвлекает от сути решения, поэтому далее предложим вариант избавления от нее. Так, если дополнить формулу содержащую функцию ЛИНЕЙН функцией ЕСЛИОШИБКА, то можно значительно улучшить вид таблицы, результат которой представлен ниже:

Распределение статистик в таблице их значение представлено на следующем рисунке:

В результате мы получили всю необходимую выходную статистическую информацию, которая нас интересует.

5 способов расчета значений линейного тренда в MS Excel

Это первая статья из серии «Как самостоятельно рассчитать прогноз продаж с учетом роста и сезонности», из которой вы узнаете о 5 способах расчета значений линейного тренда в Excel.

Для того, чтобы легче было научиться прогнозировать продажи с учетом роста и сезонности, я разбил 1 большую статью о расчете прогноза на 3 части:

    1. Расчет значений тренда (рассмотрим на примере Линейного тренда в этой статье);
    2. Расчет сезонности;
    3. Расчет прогноза;

После изучения данного материала вы сможете выбрать оптимальный способ расчета значений линейного тренда, который будет удобен для решения вашей задачи, а в последствии, и для расчета прогноза наиболее удобным для вас способом.

Линейный тренд хорошо применять для временного ряда, данные которого увеличиваются или убывают с постоянной скоростью.

Рассмотрим линейный тренд на примере расчета прогноза продаж в Excel по месяцам.

Временной ряд продажи по месяцам (см. вложенный файл).

В этом временном ряду у нас есть 2 переменных:

Уравнение линейного тренда y(x)=a+bx, где

y — это объёмы продаж

x — номер периода (порядковый номер месяца)

a – точка пересечения с осью y на графике (минимальный уровень);

b – это значение, на которое увеличивается следующее значение временного ряда;

1-й способ расчета значений линейного тренда в Excel с помощью графика

Выделяем анализируемый объём продаж и строим график, где по оси Х — наш временной ряд (1, 2, 3… — январь, февраль, март …), по оси У — объёмы продаж. Добавляем линию тренда и уравнение тренда на график. Получаем уравнение тренда y=135134x+4594044

Для прогнозирования нам необходимо рассчитать значения линейного тренда, как для анализируемых значений, так и для будущих периодов.

При расчете значений линейного тренде нам будут известны:

  1. Время — значение по оси Х;
  2. Значение «a» и «b» уравнения линейного тренда y(x)=a+bx;

Рассчитываем значения тренда для каждого периода времени от 1 до 25, а также для будущих периодов с 26 месяца до 36.

Например, для 26 месяца значение тренда рассчитывается по следующей схеме: в уравнение подставляем x=26 и получаем y=135134*26+4594044=8107551

27-го y=135134*27+4594044=8242686

2-й способ расчета значений линейного тренда в Excel — функция ЛИНЕЙН

1. Рассчитаем коэффициенты линейного тренда с помощью стандартной функции Excel:

=ЛИНЕЙН(известные значения y, известные значения x, константа, статистика)

Для расчета коэффициентов в формулу вводим

известные значения y (объёмы продаж за периоды),

известные значения x (номера периодов),

вместо константы ставим 1,

вместо статистики 0,

Получаем 135135 — значение (b) линейного тренда y=a+bx;

Для того чтобы Excel рассчитал сразу 2 коэффициента (a) и (b) линейного тренда y=a+bx, необходимо

    1. установить курсор в ячейку с формулой и выделить соседнюю справа, как на рисунке;
    2. нажимаем клавишу F2, а затем одновременно — клавиши CTRL + SHIFT + ВВОД.

Получаем 135135, 4594044 — значение (b) и (a) линейного тренда y=a+bx;

2. Рассчитаем значения линейного тренда с помощью полученных коэффициентов . Подставляем в уравнение y=135134*x+4594044 номера периодов — x, для которых хотим рассчитать значения линейного тренда.

2-й способ точнее, чем первый, т.к. коэффициенты тренда мы получаем без округления, а также быстрее.

3-й способ расчета значений линейного тренда в Excel — функция ТЕНДЕНЦИЯ

Рассчитаем значения линейного тренда с помощью стандартной функции Excel:

=ТЕНДЕНЦИЯ(известные значения y; известные значения x; новые значения x; конста)

Подставляем в формулу

  1. известные значения y — это объёмы продаж за анализируемый период (фиксируем диапазон в формуле, выделяем ссылку и нажимаем F4);
  2. известные значения x — это номера периодов x для известных значений объёмов продаж y;
  3. новые значения x — это номера периодов, для которых мы хотим рассчитать значения линейного тренда;
  4. константа — ставим 1, необходимо для того, чтобы значения тренда рассчитывались с учетом коэффицента (a) для линейного тренда y=a+bx;

Для того чтобы рассчитать значения тренда для всего временного диапазона, в «новые значения x» вводим диапазон значений X, выделяем диапазон ячеек равный диапазону со значениями X с формулой в первой ячейке и нажимаем клавишу F2, а затем — клавиши CTRL + SHIFT + ВВОД.

4-й способ расчета значений линейного тренда в Excel — функция ПРЕДСКАЗ

Рассчитаем значения линейного тренда с помощью стандартной функции Excel:

=ПРЕДСКАЗ(x; известные значения y; известные значения x)

Вместо X поставляем номер периода, для которого рассчитываем значение тренда.

Вместо «известные значения y» — объёмы продаж за анализируемый период (фиксируем диапазон в формуле, выделяем ссылку и нажимаем F4);

«известные значения x» — это номера периодов для каждого выделенного объёма продаж.

3-й и 4-й способ расчета значений линейного тренда быстрее, чем 1 и 2-й, однако с его помощью невозможно управлять коэффициентами тренда, как описано в статье «О линейном тренде».

5-й способ расчета значений линейного тренда в Excel — Forecast4AC PRO

2. Заходим в меню программы и нажимаем «Start_Forecast». Значения линейного тренда рассчитаны.

Для расчета прогноза осталось применить к значениям трендов будущих периодов коэффициенты сезонности, и прогноз продаж с учетом роста и сезонности готов.

В следующих статье «Как самостоятельно сделать прогноз продаж с учетом роста и сезонности» мы:

О том, что еще важно знать о линейном тренде, вы можете узнать в статье «Что важно знать о линейном тренде».

Точных вам прогнозов!

Присоединяйтесь к нам!

Скачивайте бесплатные приложения для прогнозирования и бизнес-анализа:

  • Novo Forecast Lite — автоматический расчет прогноза в Excel .
  • 4analytics — ABC-XYZ-анализ и анализ выбросов в Excel.
  • Qlik Sense Desktop и QlikView Personal Edition — BI-системы для анализа и визуализации данных.

Тестируйте возможности платных решений:

  • Novo Forecast PRO — прогнозирование в Excel для больших массивов данных.

Получите 10 рекомендаций по повышению точности прогнозов до 90% и выше.

Читать еще:  Совместное редактирование excel
Ссылка на основную публикацию
Adblock
detector